IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.09139.html
   My bibliography  Save this paper

Understanding algorithmic collusion with experience replay

Author

Listed:
  • Bingyan Han

Abstract

In an infinitely repeated pricing game, pricing algorithms based on artificial intelligence (Q-learning) may consistently learn to charge supra-competitive prices even without communication. Although concerns on algorithmic collusion have arisen, little is known on underlying factors. In this work, we experimentally analyze the dynamics of algorithms with three variants of experience replay. Algorithmic collusion still has roots in human preferences. Randomizing experience yields prices close to the static Bertrand equilibrium and higher prices are easily restored by favoring the latest experience. Moreover, relative performance concerns also stabilize the collusion. Finally, we investigate the scenarios with heterogeneous agents and test robustness on various factors.

Suggested Citation

  • Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2102.09139
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.09139
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazear, Edward P & Rosen, Sherwin, 1981. "Rank-Order Tournaments as Optimum Labor Contracts," Journal of Political Economy, University of Chicago Press, vol. 89(5), pages 841-864, October.
    2. Pablo Casas-Arce & F. Asís Martínez-Jerez, 2009. "Relative Performance Compensation, Contests, and Dynamic Incentives," Management Science, INFORMS, vol. 55(8), pages 1306-1320, August.
    3. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    4. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    5. Marshall Fisher & Santiago Gallino & Jun Li, 2018. "Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments," Management Science, INFORMS, vol. 64(6), pages 2496-2514, June.
    6. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," Working Paper 1438, Economics Department, Queen's University.
    7. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    8. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    9. Pai, Mallesh & Hansen, Karsten, 2020. "Algorithmic Collusion: Supra-competitive Prices via Independent Algorithms," CEPR Discussion Papers 14372, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    2. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    3. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    4. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    5. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    6. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    7. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    8. Yiquan Gu & Leonardo Madio & Carlo Reggiani, 2019. "Exclusive Data, Price Manipulation and Market Leadership," CESifo Working Paper Series 7853, CESifo.
    9. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    10. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    11. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    12. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    13. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    14. Bingyan Han, 2022. "Cooperation between Independent Market Makers," Papers 2206.05410, arXiv.org.
    15. Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2024. "Algorithmic Collusion And The Minimum Price Markov Game," Papers 2407.03521, arXiv.org, revised Nov 2024.
    16. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    17. Laura Abrardi & Carlo Cambini & Laura Rondi, 2022. "Artificial intelligence, firms and consumer behavior: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 969-991, September.
    18. Joseph E. Harrington, 2022. "The Effect of Outsourcing Pricing Algorithms on Market Competition," Management Science, INFORMS, vol. 68(9), pages 6889-6906, September.
    19. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    20. Hans-Theo Normann & Martin Sternberg, 2021. "Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_11, Max Planck Institute for Research on Collective Goods, revised 13 Apr 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.09139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.