IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.06193.html
   My bibliography  Save this paper

Tail Risk Alert Based on Conditional Autoregressive VaR by Regression Quantiles and Machine Learning Algorithms

Author

Listed:
  • Zong Ke
  • Yuchen Yin

Abstract

As the increasing application of AI in finance, this paper will leverage AI algorithms to examine tail risk and develop a model to alter tail risk to promote the stability of US financial markets, and enhance the resilience of the US economy. Specifically, the paper constructs a multivariate multilevel CAViaR model, optimized by gradient descent and genetic algorithm, to study the tail risk spillover between the US stock market, foreign exchange market and credit market. The model is used to provide early warning of related risks in US stocks, US credit bonds, etc. The results show that, by analyzing the direction, magnitude, and pseudo-impulse response of the risk spillover, it is found that the credit market's spillover effect on the stock market and its duration are both greater than the spillover effect of the stock market and the other two markets on credit market, placing credit market in a central position for warning of extreme risks. Its historical information on extreme risks can serve as a predictor of the VaR of other markets.

Suggested Citation

  • Zong Ke & Yuchen Yin, 2024. "Tail Risk Alert Based on Conditional Autoregressive VaR by Regression Quantiles and Machine Learning Algorithms," Papers 2412.06193, arXiv.org.
  • Handle: RePEc:arx:papers:2412.06193
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.06193
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    2. Charlotte Christiansen, 2010. "Decomposing European bond and equity volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(2), pages 105-122.
    3. Boris Hofmann & Hyun Song Shin & Mauricio Villamizar-Villegas, 2019. "FX intervention and domestic credit: evidence from high-frequency micro data," Borradores de Economia 1069, Banco de la Republica de Colombia.
    4. Kal, Süleyman Hilmi & Arslaner, Ferhat & Arslaner, Nuran, 2015. "The dynamic relationship between stock, bond and foreign exchange markets," Economic Systems, Elsevier, vol. 39(4), pages 592-607.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    2. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    3. Leonardo Villar-Gómez & Javier Gómez & Andrés Murcia Pabón & Wilmar Cabrera & Hernando Vargas, 2023. "The monetary and macroprudential policy framework in Colombia in the last 30 years: lessons learnt and challenges for the future," BIS Papers chapters, in: Bank for International Settlements (ed.), Central banking in the Americas: Lessons from two decades, volume 127, pages 87-112, Bank for International Settlements.
    4. Miklesh Yadav & Nandita Mishra & Shruti Ashok, 2023. "Dynamic connectedness of green bond with financial markets of European countries under OECD economies," Economic Change and Restructuring, Springer, vol. 56(1), pages 609-631, February.
    5. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    6. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    7. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    9. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    10. Nicholas Apergis, 2015. "Money Demand Sensitivity to Interest Rates: The Case of Japans Zero-Interest Rate Policy," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(9), pages 1043-1049, September.
    11. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    13. repec:wyi:journl:002087 is not listed on IDEAS
    14. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    15. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
    16. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    17. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    18. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    19. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    20. Peng, Wei, 2021. "The transmission of default risk between banks and countries based on CAViaR models," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 500-509.
    21. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.06193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.