IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.03038.html
   My bibliography  Save this paper

MILLION: A General Multi-Objective Framework with Controllable Risk for Portfolio Management

Author

Listed:
  • Liwei Deng
  • Tianfu Wang
  • Yan Zhao
  • Kai Zheng

Abstract

Portfolio management is an important yet challenging task in AI for FinTech, which aims to allocate investors' budgets among different assets to balance the risk and return of an investment. In this study, we propose a general Multi-objectIve framework with controLLable rIsk for pOrtfolio maNagement (MILLION), which consists of two main phases, i.e., return-related maximization and risk control. Specifically, in the return-related maximization phase, we introduce two auxiliary objectives, i.e., return rate prediction, and return rate ranking, combined with portfolio optimization to remit the overfitting problem and improve the generalization of the trained model to future markets. Subsequently, in the risk control phase, we propose two methods, i.e., portfolio interpolation and portfolio improvement, to achieve fine-grained risk control and fast risk adaption to a user-specified risk level. For the portfolio interpolation method, we theoretically prove that the risk can be perfectly controlled if the to-be-set risk level is in a proper interval. In addition, we also show that the return rate of the adjusted portfolio after portfolio interpolation is no less than that of the min-variance optimization, as long as the model in the reward maximization phase is effective. Furthermore, the portfolio improvement method can achieve greater return rates while keeping the same risk level compared to portfolio interpolation. Extensive experiments are conducted on three real-world datasets. The results demonstrate the effectiveness and efficiency of the proposed framework.

Suggested Citation

  • Liwei Deng & Tianfu Wang & Yan Zhao & Kai Zheng, 2024. "MILLION: A General Multi-Objective Framework with Controllable Risk for Portfolio Management," Papers 2412.03038, arXiv.org.
  • Handle: RePEc:arx:papers:2412.03038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.03038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.
    2. Zheng Hao & Haowei Zhang & Yipu Zhang, 2023. "Stock Portfolio Management by Using Fuzzy Ensemble Deep Reinforcement Learning Algorithm," JRFM, MDPI, vol. 16(3), pages 1-14, March.
    3. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    4. Tuoyuan Cheng & Kan Chen, 2023. "A General Framework for Portfolio Construction Based on Generative Models of Asset Returns," Papers 2312.03294, arXiv.org.
    5. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    2. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    3. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
    4. Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    5. Frensi Zejnullahu & Maurice Moser & Joerg Osterrieder, 2022. "Applications of Reinforcement Learning in Finance -- Trading with a Double Deep Q-Network," Papers 2206.14267, arXiv.org.
    6. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    7. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    8. Tom Liu & Stefan Zohren, 2023. "Multi-Factor Inception: What to Do with All of These Features?," Papers 2307.13832, arXiv.org.
    9. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    10. Owen Futter & Blanka Horvath & Magnus Wiese, 2023. "Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals," Papers 2308.15135, arXiv.org, revised Aug 2023.
    11. Shuyang Wang & Diego Klabjan, 2023. "An Ensemble Method of Deep Reinforcement Learning for Automated Cryptocurrency Trading," Papers 2309.00626, arXiv.org.
    12. Mehran Taghian & Ahmad Asadi & Reza Safabakhsh, 2021. "A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules," Papers 2101.03867, arXiv.org.
    13. Tom Liu & Stephen Roberts & Stefan Zohren, 2023. "Deep Inception Networks: A General End-to-End Framework for Multi-asset Quantitative Strategies," Papers 2307.05522, arXiv.org.
    14. Carlo Nicolini & Monisha Gopalan & Jacopo Staiano & Bruno Lepri, 2024. "Hopfield Networks for Asset Allocation," Papers 2407.17645, arXiv.org.
    15. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    16. Alejandra de la Rica Escudero & Eduardo C. Garrido-Merchan & Maria Coronado-Vaca, 2024. "Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent," Papers 2407.14486, arXiv.org.
    17. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.
    18. Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
    19. Manuel Nunes & Enrico Gerding & Frank McGroarty & Mahesan Niranjan, 2020. "Long short-term memory networks and laglasso for bond yield forecasting: Peeping inside the black box," Papers 2005.02217, arXiv.org.
    20. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.03038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.