IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v95y2024ipbs1057521924003508.html
   My bibliography  Save this article

Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets

Author

Listed:
  • Wang, Jianzhou
  • Lv, Mengzheng
  • Wang, Shuai
  • Gao, Jialu
  • Zhao, Yang
  • Wang, Qiangqiang

Abstract

Current portfolios often underperform due to limited utilization of stock selection and a lack of attention to multi-period trading. To address this issue, we propose an auto-portfolio system that addresses these problems by integrating multi-class stock selection with portfolio optimization based on technical indicators. For stock selection, we combine Two-dimensional Convolutional Neural Network with Long and Short-term Memory to forecast the future trends of stocks and select potentially profitable stocks for investment. We then develop two portfolio models based on two technical indicators, which automatically perform multi-period investment. We establish a many-objective optimization problem including return, Conditional Value-at-Risk, skewness, kurtosis, and cost. To solve the optimization problem, we employ Non-dominated Sorting Genetic Algorithm III. The data of Chinese and the U.S. stock markets is used for verification, and a comparative analysis is discussed. In the out-of-sample period, two proposed multi-period portfolio models outperform the other models in both single and multi period, achieving higher Sharpe ratio of 1.021 and 1.052 in China, and 1.116 and 1.236 in the U.S., respectively.

Suggested Citation

  • Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  • Handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003508
    DOI: 10.1016/j.irfa.2024.103418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924003508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiantao & Zhu, Yuanguo & Tang, Pan, 2024. "Uncertain mean-CVaR model for portfolio selection with transaction cost and investors’ preferences," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. repec:dau:papers:123456789/4688 is not listed on IDEAS
    4. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).
    5. Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
    6. Mi, Hui & Xu, Zuo Quan, 2023. "Optimal portfolio selection with VaR and portfolio insurance constraints under rank-dependent expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 82-105.
    7. John M. Mulvey & Yifan Sun & Mengdi Wang & Jing Ye, 2020. "Optimizing a portfolio of mean-reverting assets with transaction costs via a feedforward neural network," Quantitative Finance, Taylor & Francis Journals, vol. 20(8), pages 1239-1261, August.
    8. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    9. Samuel H. Cox & Yijia Lin & Ruilin Tian & Luis F. Zuluaga, 2013. "Mortality Portfolio Risk Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 853-890, December.
    10. Helu Xiao & Zhongbao Zhou & Tiantian Ren & Yanfei Bai & Wenbin Liu, 2020. "Time-consistent strategies for multi-period mean-variance portfolio optimization with the serially correlated returns," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(12), pages 2831-2868, June.
    11. Santos, André A.P. & Torrent, Hudson S., 2022. "Markowitz meets technical analysis: Building optimal portfolios by exploiting information in trend-following signals," Finance Research Letters, Elsevier, vol. 49(C).
    12. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    13. Sadefo Kamdem, Jules & Tassak Deffo, Christian & Fono, Louis Aimé, 2012. "Moments and semi-moments for fuzzy portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 517-530.
    14. repec:inm:orijoo:v:3:y:2021:i:4:p:398-417 is not listed on IDEAS
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2007. "Mean-variance portfolio selection with `at-risk' constraints and discrete distributions," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3761-3781, December.
    16. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
    17. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    18. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.
    19. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    20. Anatoly B. Schmidt, 2019. "Managing portfolio diversity within the mean variance theory," Annals of Operations Research, Springer, vol. 282(1), pages 315-329, November.
    21. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    22. Han, Yingwei & Li, Jie, 2022. "Should investors include green bonds in their portfolios? Evidence for the USA and Europe," International Review of Financial Analysis, Elsevier, vol. 80(C).
    23. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    24. Helu Xiao & Zhongbao Zhou & Tiantian Ren & Yanfei Bai & Wenbin Liu, 2020. "Time-consistent strategies for multi-period mean-variance portfolio optimization with the serially correlated returns," Post-Print hal-03281772, HAL.
    25. Stefania Corsaro & Valentina De Simone & Zelda Marino, 2021. "Fused Lasso approach in portfolio selection," Annals of Operations Research, Springer, vol. 299(1), pages 47-59, April.
    26. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    27. Andrew Butler & Roy H. Kwon, 2023. "Integrating prediction in mean-variance portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 23(3), pages 429-452, March.
    28. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    29. Liu, Jing & He, Qiubei & Li, Yan & Huynh, Luu Duc Toan & Liang, Chao, 2023. "The change in stock-selection risk and stock market returns," International Review of Financial Analysis, Elsevier, vol. 85(C).
    30. Helmut Mausser & Oleksandr Romanko, 2018. "Long-only equal risk contribution portfolios for CVaR under discrete distributions," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1927-1945, November.
    31. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    32. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    33. Li, Xiaoyue & Uysal, A. Sinem & Mulvey, John M., 2022. "Multi-period portfolio optimization using model predictive control with mean-variance and risk parity frameworks," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1158-1176.
    34. Karmakar, Madhusudan & Paul, Samit, 2019. "Intraday portfolio risk management using VaR and CVaR:A CGARCH-EVT-Copula approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 699-709.
    35. Jamie Fairbrother & Amanda Turner & Stein W. Wallace, 2018. "Scenario Generation for Single-Period Portfolio Selection Problems with Tail Risk Measures: Coping with High Dimensions and Integer Variables," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 472-491, August.
    36. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    37. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    38. Anthony Neuberger & Richard Payne & Stijn Van Nieuwerburgh, 2021. "The Skewness of the Stock Market over Long Horizons [Does realized skewness predict the cross-section of equity returns?]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1572-1616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoyue & Uysal, A. Sinem & Mulvey, John M., 2022. "Multi-period portfolio optimization using model predictive control with mean-variance and risk parity frameworks," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1158-1176.
    2. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    3. Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    4. Naqvi, Bushra & Rizvi, Syed Kumail Abbas & Hasnaoui, Amir & Shao, Xuefeng, 2022. "Going beyond sustainability: The diversification benefits of green energy financial products," Energy Economics, Elsevier, vol. 111(C).
    5. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    6. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    7. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    8. Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).
    9. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    10. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    11. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    12. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    13. Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2024. "Dynamic robust portfolio selection under market distress," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    14. Zhou, Zhongbao & Gao, Meng & Xiao, Helu & Wang, Rui & Liu, Wenbin, 2021. "Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources," Omega, Elsevier, vol. 104(C).
    15. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    16. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    17. Areski Cousin & J'er^ome Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Papers 2305.16152, arXiv.org, revised Jun 2023.
    18. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    19. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    20. repec:hal:wpaper:hal-04086378 is not listed on IDEAS
    21. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.