IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.15718.html
   My bibliography  Save this paper

Can an increase in productivity cause a decrease in production? Insights from a model economy with AI automation

Author

Listed:
  • Casey O. Barkan

Abstract

It is widely assumed that increases in economic productivity necessarily lead to economic growth. In this paper, it is shown that this is not always the case. An idealized model of an economy is presented in which a new technology allows capital to be utilized autonomously without labor input. This is motivated by the possibility that advances in artificial intelligence (AI) will give rise to AI agents that act autonomously in the economy. The economic model involves a single profit-maximizing firm which is a monopolist in the product market and a monopsonist in the labor market. The new automation technology causes the firm to replace labor with capital in such a way that its profit increases while total production decreases. The model is not intended to capture the structure of a real economy, but rather to illustrate how basic economic mechanisms can give rise to counterintuitive and undesirable outcomes.

Suggested Citation

  • Casey O. Barkan, 2024. "Can an increase in productivity cause a decrease in production? Insights from a model economy with AI automation," Papers 2411.15718, arXiv.org.
  • Handle: RePEc:arx:papers:2411.15718
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.15718
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Anton Korinek & Donghyun Suh, 2024. "Scenarios for the Transition to AGI," NBER Working Papers 32255, National Bureau of Economic Research, Inc.
    3. Fatih Guvenen, 2011. "Macroeconomics with hetereogeneity : a practical guide," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 97(3Q), pages 255-326.
    4. Daron Acemoglu, 2024. "The Simple Macroeconomics of AI," NBER Working Papers 32487, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shohei Momoda & Takayuki Ogawa & Ryosuke Shimizu, 2024. "Automation and Growth Patterns in an Open Economy," KIER Working Papers 1109, Kyoto University, Institute of Economic Research.
    2. Dennis C. Hutschenreiter & Tommaso Santini & Eugenia Vella, 2022. "Automation and sectoral reallocation," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 335-362, May.
    3. Josten, Cecily & Lordan, Grace, 2019. "Robots at Work: Automatable and Non Automatable Jobs," IZA Discussion Papers 12520, Institute of Labor Economics (IZA).
    4. Sebastian Dyrda & Marcelo Pedroni, 2015. "Optimal Fiscal Policy in a Model with Uninsurable Idiosyncratic Shocks," Working Papers tecipa-550, University of Toronto, Department of Economics.
    5. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    6. Kyoji Fukao & Cristiano Perugini, 2021. "The Long‐Run Dynamics of the Labor Share in Japan," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(2), pages 445-480, June.
    7. Matteo G. Richiardi & Luis Valenzuela, 2024. "Firm heterogeneity and the aggregate labour share," LABOUR, CEIS, vol. 38(1), pages 66-101, March.
    8. Qiansheng Gong & Xiangyu Wang & Xi Tang, 2023. "How Can the Development of Digital Economy Empower Green Transformation and Upgrading of the Manufacturing Industry?—A Quasi-Natural Experiment Based on the National Big Data Comprehensive Pilot Zone ," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    9. Daniele Angelini, 2023. "Aging Population and Technology Adoption," Working Paper Series of the Department of Economics, University of Konstanz 2023-01, Department of Economics, University of Konstanz.
    10. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    11. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    12. Stephan Brunow & Stefanie Lösch & Ostap Okhrin, 2022. "Labor market tightness and individual wage growth: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 56(1), pages 1-21, December.
    13. Auster, Sarah & Kettering, Jeremy & Kochov, Asen, 2024. "Sequential trading with coarse contingencies," Journal of Economic Theory, Elsevier, vol. 220(C).
    14. Engberg, Erik & Görg, Holger & Lodefalk, Magnus & Javed, Farrukh & Längkvist, Martin & Monteiro, Natália & Kyvik Nordås, Hildegunn & Pulito, Giuseppe & Schroeder, Sarah & Tang, Aili, 2023. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," Ratio Working Papers 370, The Ratio Institute.
    15. Akaev, Askar & Devezas, Tessaleno & Ichkitidze, Yuri & Sarygulov, Askar, 2021. "Forecasting the labor intensity and labor income share for G7 countries in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Enrico Maria Fenoaltea & Dario Mazzilli & Aurelio Patelli & Angelica Sbardella & Andrea Tacchella & Andrea Zaccaria & Marco Trombetti & Luciano Pietronero, 2024. "Follow the money: a startup-based measure of AI exposure across occupations, industries and regions," Papers 2412.04924, arXiv.org, revised Dec 2024.
    17. Cristiano CODAGNONE & Giovanni LIVA & Egidijus BARCEVICIUS & Gianluca MISURACA & Luka KLIMAVICIUTE & Michele BENEDETTI & Irene VANINI & Giancarlo VECCHI & Emily RYEN GLOINSON & Katherine STEWART & Sti, 2020. "Assessing the impacts of digital government transformation in the EU: Conceptual framework and empirical case studies," JRC Research Reports JRC120865, Joint Research Centre.
    18. Fabian Stephany & Ole Teutloff, 2022. "What is the Price of a Skill? The Value of Complementarity," Papers 2210.01535, arXiv.org, revised Nov 2023.
    19. Philippe Aghion & Céline Antonin & Simon Bunel & Xavier Jaravel, 2020. "What Are the Labor and Product Market Effects of Automation? New Evidence from France," SciencePo Working papers Main hal-03403062, HAL.
    20. Xiangyi Li & Qing Wang & Ying Tang, 2024. "The Impact of Artificial Intelligence Development on Urban Energy Efficiency—Based on the Perspective of Smart City Policy," Sustainability, MDPI, vol. 16(8), pages 1-22, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.15718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.