IDEAS home Printed from https://ideas.repec.org/p/crm/wpaper/2414.html
   My bibliography  Save this paper

AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries

Author

Listed:
  • Erik Engberg

    (Orebro University)

  • Holger Gorg

    (Kiel Institute for the World Economy)

  • Magnus Lodefalk

    (Örebro University)

  • Farrukh Javed
  • Martin Langkvist
  • Natalia Monteiro
  • Hildegunn Nordas
  • Giuseppe Pulito

    (Rockwool Foundation Berlin)

  • Sarah Schroeder

    (Aarhus University)

  • Aili Tang

    (Örebro University)

Abstract

We unbox developments in artificial intelligence (AI) to estimate how exposure to these developments affect firm-level labour demand, using detailed register data from Denmark, Portugal and Sweden over two decades. Based on data on AI capabilities and occupational work content, we develop and validate a time-variant measure for occupational exposure to AI across subdomains of AI, such as language modelling. According to the model, white collar occupations are most exposed to AI, and especially white collar work that entails relatively little social interaction. We illustrate its usefulness by applying it to near-universal data on firms and individuals from Sweden, Denmark,and Portugal, and estimating firm labour demand regressions. We find a positive (negative) association between AI exposure and labour demand for high-skilled white (blue) collar work. Overall, there is an up-skilling effect, with the share of white-collar to blue collar workers increasing with AI exposure. Exposure to AI within the subdomains of image and language are positively (negatively) linked to demand for high-skilled white collar (blue collar) work, whereas other AI-areas are heterogeneously linked to groupsof workers.

Suggested Citation

  • Erik Engberg & Holger Gorg & Magnus Lodefalk & Farrukh Javed & Martin Langkvist & Natalia Monteiro & Hildegunn Nordas & Giuseppe Pulito & Sarah Schroeder & Aili Tang, 2024. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," RF Berlin - CReAM Discussion Paper Series 2414, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
  • Handle: RePEc:crm:wpaper:2414
    as

    Download full text from publisher

    File URL: https://www.rfberlin.com/wp-content/uploads/2024/08/AI-Unboxed-and-Jobs-A-Novel-Measure-and-Firm-Level-Evidence-from-Three-Countries.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
    3. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    4. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    5. Gmyrek, Pawel, & Berg, Janine, & Bescond, David,, 2023. "Generative AI and jobs a global analysis of potential effects on job quantity and quality," ILO Working Papers 995324892702676, International Labour Organization.
    6. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albanesi, Stefania & Da Silva, António Dias & Jimeno, Juan F. & Lamo, Ana & Wabitsch, Alena, 2023. "New technologies and jobs in Europe," Working Paper Series 2831, European Central Bank.
    2. Enrico Maria Fenoaltea & Dario Mazzilli & Aurelio Patelli & Angelica Sbardella & Andrea Tacchella & Andrea Zaccaria & Marco Trombetti & Luciano Pietronero, 2024. "Follow the money: a startup-based measure of AI exposure across occupations, industries and regions," Papers 2412.04924, arXiv.org, revised Dec 2024.
    3. Rafael Novella & David Rosas-Shady & Alfredo Alvarado, 2023. "Are we nearly there yet? New technology adoption and labor demand in Peru," Science and Public Policy, Oxford University Press, vol. 50(4), pages 565-578.
    4. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    5. Albanesi, Stefania & Da Silva, António Dias & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "Reports of AI ending human labour may be greatly exaggerated," Research Bulletin, European Central Bank, vol. 113.
    6. Ekaterina Prytkova & Fabien Petit & Deyu Li & Sugat Chaturvedi & Tommaso Ciarli, 2024. "The Employment Impact of Emerging Digital Technologies," CEPEO Working Paper Series 24-01, UCL Centre for Education Policy and Equalising Opportunities, revised Feb 2024.
    7. Stefania Albanesi & Wabitsch Alena & António Dias da Silva & Juan F. Jimeno & Ana Lamo, 2024. "New Technologies and Jobs in Europe," Opportunity and Inclusive Growth Institute Working Papers 105, Federal Reserve Bank of Minneapolis.
    8. Oschinski, Matthias, 2023. "Assessing the Impact of Artificial Intelligence on Germany's Labor Market: Insights from a ChatGPT Analysis," MPRA Paper 118300, University Library of Munich, Germany.
    9. Pablo Casas & José L. Torres, 2023. "Automation, automatic capital returns, and the functional income distribution," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(1), pages 113-135, January.
    10. Frattini, Federico Fabio & Vona, Francesco & Bontadini, Filippo, 2024. "Does Green Re-industrialization Pay off? Impacts on Employment, Wages and Productivity," FEEM Working Papers 344791, Fondazione Eni Enrico Mattei (FEEM).
    11. Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
    12. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    13. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    14. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    15. Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
    16. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the Digital Divide: Workers' Exposure to Digitalization and Its Consequences for Individual Employment," IZA Discussion Papers 14649, Institute of Labor Economics (IZA).
    18. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2020. "AI and Jobs: Evidence from Online Vacancies," NBER Working Papers 28257, National Bureau of Economic Research, Inc.
    19. Xiang Hui & Oren Reshef & Luofeng Zhou, 2023. "The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market," CESifo Working Paper Series 10601, CESifo.
    20. Ana Abeliansky & Klaus Prettner & Ernesto Rodríguez Crespo, 2024. "Climate change and automation: the emission effects of robot adoption," Department of Economics Working Papers wuwp370, Vienna University of Economics and Business, Department of Economics.

    More about this item

    Keywords

    Artificial intelligence; Labour demand; Multi-country firm-level evidence;
    All these keywords.

    JEL classification:

    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • N34 - Economic History - - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy - - - Europe: 1913-
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crm:wpaper:2414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CReAM Administrator or Matthew Nibloe (email available below). General contact details of provider: https://edirc.repec.org/data/cmucluk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.