Collusion Detection with Graph Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
- David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
- Rieko Ishii, 2014. "Bid Roundness Under Collusion in Japanese Procurement Auctions," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(3), pages 241-254, May.
- Robert H. Porter & J. Douglas Zona, 1999.
"Ohio School Milk Markets: An Analysis of Bidding,"
RAND Journal of Economics, The RAND Corporation, vol. 30(2), pages 263-288, Summer.
- Robert H. Porter & J. Douglas Zona, 1997. "Ohio School Milk Markets: An Analysis of Bidding," NBER Working Papers 6037, National Bureau of Economic Research, Inc.
- David Imhof & Yavuz Karagök & Samuel Rutz, 2018. "Screening For Bid Rigging—Does It Work?," Journal of Competition Law and Economics, Oxford University Press, vol. 14(2), pages 235-261.
- Jacquemin, Alexis & Slade, Margaret E., 1989. "Cartels, collusion, and horizontal merger," Handbook of Industrial Organization, in: R. Schmalensee & R. Willig (ed.), Handbook of Industrial Organization, edition 1, volume 1, chapter 7, pages 415-473, Elsevier.
- Timothy G. Conley & Francesco Decarolis, 2016. "Detecting Bidders Groups in Collusive Auctions," American Economic Journal: Microeconomics, American Economic Association, vol. 8(2), pages 1-38, May.
- Ibáñez Colomo, Pablo, 2020. "Anticompetitive effects in EU competition law," LSE Research Online Documents on Economics 107056, London School of Economics and Political Science, LSE Library.
- Imhof, David, 2017. "Simple Statistical Screens to Detect Bid Rigging," FSES Working Papers 484, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
- Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
- Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
- Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
- Martin Huber & David Imhof & Rieko Ishii, 2022.
"Transnational machine learning with screens for flagging bid‐rigging cartels,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
- Huber, Martin & Imhof, David, 2020. "Transnational machine learning with screens for flagging bid-rigging cartels," FSES Working Papers 519, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
- Garcia Pires, Armando J. & Skjeret, Frode, 2023. "Screening for partial collusion in retail electricity markets," Energy Economics, Elsevier, vol. 117(C).
- Johannes Wachs & J'anos Kert'esz, 2019. "A network approach to cartel detection in public auction markets," Papers 1906.08667, arXiv.org.
- Hannes Wallimann & Silvio Sticher, 2024. "How to Use Data Science in Economics -- a Classroom Game Based on Cartel Detection," Papers 2401.14757, arXiv.org.
- Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020.
"Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation,"
ZEW Discussion Papers
20-052, ZEW - Leibniz Centre for European Economic Research.
- Robert Clark & Decio Coviello & Adriano De Leverano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," Working Paper 1446, Economics Department, Queen's University.
- Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
- Robert Clark & Ignatius Horstmann & Jean-François Houde, 2021.
"Hub and Spoke Cartels: Theory and Evidence from the Grocery Industry,"
NBER Working Papers
29253, National Bureau of Economic Research, Inc.
- Robert Clark & Ig Horstmann & Jean-Francois Houde, 2021. "Hub-and-spoke cartels: Theory and evidence from the grocery industry," Working Paper 1473, Economics Department, Queen's University.
- Huber, Martin & Imhof, David, 2019.
"Machine learning with screens for detecting bid-rigging cartels,"
International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
- Huber, Martin & Imhof, David, 2018. "Machine Learning with Screens for Detecting Bid-Rigging Cartels," FSES Working Papers 494, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2022. "Robust Screens for Noncompetitive Bidding in Procurement Auctions," Econometrica, Econometric Society, vol. 90(1), pages 315-346, January.
- Wallimann, Hannes & Sticher, Silvio, 2023. "On suspicious tracks: Machine-learning based approaches to detect cartels in railway-infrastructure procurement," Transport Policy, Elsevier, vol. 143(C), pages 121-131.
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- David P. Brown & Andrew Eckert, 2022.
"Pricing Patterns in Wholesale Electricity Markets: Unilateral Market Power or Coordinated Behavior?,"
Journal of Industrial Economics, Wiley Blackwell, vol. 70(1), pages 168-216, March.
- Brown, David P. & Eckert, Andrew, 2019. "Pricing Patterns in Wholesale Electricity Markets: Unilateral Market Power or Coordinated Behavior?," Working Papers 2019-9, University of Alberta, Department of Economics.
- Florencia M. Gabrielli, 2013.
"Detecting Collusion on Highway Procurement,"
Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 59, pages 127-165, January-D.
- Maria Florencia Gabrielli, 2023. "Detecting Collusion on Highway Procurement," Working Papers 263, Red Nacional de Investigadores en Economía (RedNIE).
- Hatsumi, Kentaro & Ishii, Rieko, 2022. "The effect of price on the quality of public construction in Japan," Japan and the World Economy, Elsevier, vol. 62(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-11-11 (Big Data)
- NEP-CMP-2024-11-11 (Computational Economics)
- NEP-COM-2024-11-11 (Industrial Competition)
- NEP-NET-2024-11-11 (Network Economics)
- NEP-REG-2024-11-11 (Regulation)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.07091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.