IDEAS home Printed from https://ideas.repec.org/a/eee/indorg/v89y2023ics0167718723000280.html
   My bibliography  Save this article

Flagging cartel participants with deep learning based on convolutional neural networks

Author

Listed:
  • Huber, Martin
  • Imhof, David

Abstract

Adding to the literature on the data-driven detection of bid-rigging cartels, we propose a novel approach based on deep learning (a subfield of artificial intelligence) that flags cartel participants based on their pairwise bidding interactions with other firms. More concisely, we combine a so-called convolutional neural network for image recognition with graphs that in a pairwise manner plot the normalized bids of some reference firm against the normalized bids of any other firms participating in the same tenders as the reference firm. Based on Japanese and Swiss procurement data, we construct such graphs for both collusive and competitive episodes (i.e when a bid-rigging cartel is or is not active) and we use a subset of graphs to train the neural network such that it learns distinguishing collusive from competitive bidding patterns. With the remaining graphs, we test the neural network’s out-of-sample performance in correctly classifying collusive and competitive bidding interactions. We obtain a very decent average accuracy of around 95% or slightly higher when either applying the method within Japanese, Swiss, or mixed data (in which Swiss and Japanese graphs are pooled). When using data from one country for training to test the trained model’s performance in the other country (i.e. transnationally), predictive performance decreases (likely due to institutional differences in procurement procedures across countries), but often remains satisfactorily high. All in all, the generally quite high accuracy of the convolutional neural network despite being trained in a rather small sample of a few 100 graphs points to a large potential of deep learning approaches for flagging and fighting bid-rigging cartels.

Suggested Citation

  • Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:indorg:v:89:y:2023:i:c:s0167718723000280
    DOI: 10.1016/j.ijindorg.2023.102946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167718723000280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijindorg.2023.102946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Banerji & J.V. Meenakshi, 2004. "Buyer Collusion and Efficiency of Government Intervention in Wheat Markets in Northern India: An Asymmetric Structural Auctions Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 236-253.
    2. Feinstein, Jonathan S & Block, Michael K & Nold, Frederick C, 1985. "Asymmetric Information and Collusive Behavior in Auction Markets," American Economic Review, American Economic Association, vol. 75(3), pages 441-460, June.
    3. Kai Hüschelrath & Tobias Veith, 2014. "Cartel Detection in Procurement Markets," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 35(6), pages 404-422, September.
    4. Patrick Bajari & Lixin Ye, 2003. "Deciding Between Competition and Collusion," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 971-989, November.
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2020. "Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain," Complexity, Hindawi, vol. 2020, pages 1-20, November.
    6. Porter, Robert H & Zona, J Douglas, 1993. "Detection of Bid Rigging in Procurement Auctions," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 518-538, June.
    7. Imhof, David, 2017. "Econometric tests to detect bid-rigging cartels: does it work?," FSES Working Papers 483, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Aryal, Gaurab & Gabrielli, Maria F., 2013. "Testing for collusion in asymmetric first-price auctions," International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 26-35.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Juan Jiménez & Jordi Perdiguero, 2012. "Does Rigidity of Prices Hide Collusion?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 223-248, November.
    11. In Lee & Kyungdong Hahn, 2002. "Bid-Rigging in Auctions for Korean Public-Works Contracts and Potential Damage," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 21(1), pages 73-88, August.
    12. Baldwin, Laura H & Marshall, Robert C & Richard, Jean-Francois, 1997. "Bidder Collusion at Forest Service Timber Sales," Journal of Political Economy, University of Chicago Press, vol. 105(4), pages 657-699, August.
    13. John Asker, 2010. "A Study of the Internal Organization of a Bidding Cartel," American Economic Review, American Economic Association, vol. 100(3), pages 724-762, June.
    14. Abrantes-Metz, Rosa M. & Froeb, Luke M. & Geweke, John & Taylor, Christopher T., 2006. "A variance screen for collusion," International Journal of Industrial Organization, Elsevier, vol. 24(3), pages 467-486, May.
    15. Robert H. Porter & J. Douglas Zona, 1999. "Ohio School Milk Markets: An Analysis of Bidding," RAND Journal of Economics, The RAND Corporation, vol. 30(2), pages 263-288, Summer.
    16. Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
    17. Martin Huber & David Imhof & Rieko Ishii, 2022. "Transnational machine learning with screens for flagging bid‐rigging cartels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
    18. Bolotova, Yuliya & Connor, John M. & Miller, Douglas J., 2008. "The impact of collusion on price behavior: Empirical results from two recent cases," International Journal of Industrial Organization, Elsevier, vol. 26(6), pages 1290-1307, November.
    19. Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2022. "Robust Screens for Noncompetitive Bidding in Procurement Auctions," Econometrica, Econometric Society, vol. 90(1), pages 315-346, January.
    20. David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
    21. Rieko Ishii, 2014. "Bid Roundness Under Collusion in Japanese Procurement Auctions," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(3), pages 241-254, May.
    22. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    23. Ranon Chotibhongs & David Arditi, 2012. "Analysis of collusive bidding behaviour," Construction Management and Economics, Taylor & Francis Journals, vol. 30(3), pages 221-231, January.
    24. David Imhof & Yavuz Karagök & Samuel Rutz, 2018. "Screening For Bid Rigging—Does It Work?," Journal of Competition Law and Economics, Oxford University Press, vol. 14(2), pages 235-261.
    25. Timothy G. Conley & Francesco Decarolis, 2016. "Detecting Bidders Groups in Collusive Auctions," American Economic Journal: Microeconomics, American Economic Association, vol. 8(2), pages 1-38, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
    2. Lucas Gomes & Jannis Kueck & Mara Mattes & Martin Spindler & Alexey Zaytsev, 2024. "Collusion Detection with Graph Neural Networks," Papers 2410.07091, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannes Wallimann & David Imhof & Martin Huber, 2023. "A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
    2. Martin Huber & David Imhof & Rieko Ishii, 2022. "Transnational machine learning with screens for flagging bid‐rigging cartels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
    3. Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
    4. Huber, Martin & Imhof, David, 2019. "Machine learning with screens for detecting bid-rigging cartels," International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
    5. Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
    6. Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    7. Imhof, David, 2017. "Simple Statistical Screens to Detect Bid Rigging," FSES Working Papers 484, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," ZEW Discussion Papers 20-052, ZEW - Leibniz Centre for European Economic Research.
    9. Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
    10. Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
    11. Wallimann, Hannes & Sticher, Silvio, 2023. "On suspicious tracks: Machine-learning based approaches to detect cartels in railway-infrastructure procurement," Transport Policy, Elsevier, vol. 143(C), pages 121-131.
    12. Brown, David P. & Eckert, Andrew & Silveira, Douglas, 2023. "Screening for collusion in wholesale electricity markets: A literature review," Utilities Policy, Elsevier, vol. 85(C).
    13. Johannes Wachs & J'anos Kert'esz, 2019. "A network approach to cartel detection in public auction markets," Papers 1906.08667, arXiv.org.
    14. David Imhof & Yavuz Karagök & SAMUEL RUTZ, 2017. "Screening for Bid-rigging. Does it Work?," Working Papers 2017-09, CRESE.
    15. Garcia Pires, Armando J. & Skjeret, Frode, 2023. "Screening for partial collusion in retail electricity markets," Energy Economics, Elsevier, vol. 117(C).
    16. David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
    17. David Barrus & Frank Scott, 2020. "Single Bidders and Tacit Collusion in Highway Procurement Auctions," Journal of Industrial Economics, Wiley Blackwell, vol. 68(3), pages 483-522, September.
    18. Ilya Morozov & Elena Podkolzina, 2013. "Collusion detection in procurement auctions," HSE Working papers WP BRP 25/EC/2013, National Research University Higher School of Economics.
    19. Bedri Kamil Onur Tas, 2017. "Collusion Detection in Public Procurement with Limited Information," Working Papers 1127, Economic Research Forum, revised 08 Oct 2017.
    20. Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022. "Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels," Energy Economics, Elsevier, vol. 105(C).

    More about this item

    Keywords

    Bid rigging; Deep learning; Convolutional neural networks; Bid rotation test;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • K40 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - General
    • L40 - Industrial Organization - - Antitrust Issues and Policies - - - General
    • L41 - Industrial Organization - - Antitrust Issues and Policies - - - Monopolization; Horizontal Anticompetitive Practices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:indorg:v:89:y:2023:i:c:s0167718723000280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505551 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.