On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huber, Martin & Imhof, David, 2019.
"Machine learning with screens for detecting bid-rigging cartels,"
International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
- Huber, Martin & Imhof, David, 2018. "Machine Learning with Screens for Detecting Bid-Rigging Cartels," FSES Working Papers 494, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Marc Blatter & Winand Emons & Silvio Sticher, 2018.
"Optimal Leniency Programs When Firms Have Cumulative and Asymmetric Evidence,"
Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(3), pages 403-427, May.
- Marc Blatter & Winand Emons & Silvio Sticher, 2014. "Optimal Leniency Programs when Firms Have Cumulative and Asymmetric Evidence," Diskussionsschriften dp1405, Universitaet Bern, Departement Volkswirtschaft.
- Emons, Winand & Sticher, Silvio & Blatter, Marc, 2014. "Optimal Leniency Programs when Firms Have Cumulative and Asymmetric Evidence," CEPR Discussion Papers 10106, C.E.P.R. Discussion Papers.
- Abrantes-Metz, Rosa M. & Froeb, Luke M. & Geweke, John & Taylor, Christopher T., 2006. "A variance screen for collusion," International Journal of Industrial Organization, Elsevier, vol. 24(3), pages 467-486, May.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2022. "Robust Screens for Noncompetitive Bidding in Procurement Auctions," Econometrica, Econometric Society, vol. 90(1), pages 315-346, January.
- Finger, Matthias, 2014. "Governance of competition and performance in European railways: An analysis of five cases," Utilities Policy, Elsevier, vol. 31(C), pages 278-288.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
- Patrick Bajari & Lixin Ye, 2003.
"Deciding Between Competition and Collusion,"
The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 971-989, November.
- Patrick Bajari & Lixin Ye, 2001. "Deciding Between Competition and Collusion," Working Papers 01008, Stanford University, Department of Economics.
- Juan Jiménez & Jordi Perdiguero, 2012.
"Does Rigidity of Prices Hide Collusion?,"
Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 223-248, November.
- Juan Luis Jiménez & Jordi Perdiguero, 2011. "Does Rigidity of Prices Hide Collusion?," IREA Working Papers 201120, University of Barcelona, Research Institute of Applied Economics, revised Oct 2011.
- David Imhof & Yavuz Karagök & Samuel Rutz, 2018. "Screening For Bid Rigging—Does It Work?," Journal of Competition Law and Economics, Oxford University Press, vol. 14(2), pages 235-261.
- Martin Huber & David Imhof & Rieko Ishii, 2022.
"Transnational machine learning with screens for flagging bid‐rigging cartels,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
- Huber, Martin & Imhof, David, 2020. "Transnational machine learning with screens for flagging bid-rigging cartels," FSES Working Papers 519, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Porter, Robert H & Zona, J Douglas, 1993.
"Detection of Bid Rigging in Procurement Auctions,"
Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 518-538, June.
- Robert H. Porter & J. Douglas Zona, 1992. "Detection of Bid Rigging in Procurement Auctions," NBER Working Papers 4013, National Bureau of Economic Research, Inc.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
- Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
- Jean-Jacques Laffont & Jean Tirole, 1993. "A Theory of Incentives in Procurement and Regulation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262121743, December.
- Robert Clark & Decio Coviello & Jean-Fran�ois Gauthier & Art Shneyerov, 2018.
"Bid Rigging and Entry Deterrence in Public Procurement: Evidence from an Investigation into Collusion and Corruption in Quebec,"
The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(3), pages 301-363.
- Robert Clark & Decio Coviello & Jean-Francois Gauthier & Art Shneyerov, 2018. "Bid Rigging And Entry Deterrence In Public Procurement: Evidence From An Investigation Into Collusion And Corruption In Quebec," Working Paper 1401, Economics Department, Queen's University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
- Harald Konnerth, 2023. "Artificial Intelligence (Ai) In E-Procurement: A Literature Review," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 17(1), pages 98-113.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wallimann, Hannes & Sticher, Silvio, 2023. "On suspicious tracks: Machine-learning based approaches to detect cartels in railway-infrastructure procurement," Transport Policy, Elsevier, vol. 143(C), pages 121-131.
- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
- Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
- Brown, David P. & Eckert, Andrew & Silveira, Douglas, 2023. "Screening for collusion in wholesale electricity markets: A literature review," Utilities Policy, Elsevier, vol. 85(C).
- Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
- Martin Huber & David Imhof & Rieko Ishii, 2022.
"Transnational machine learning with screens for flagging bid‐rigging cartels,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
- Huber, Martin & Imhof, David, 2020. "Transnational machine learning with screens for flagging bid-rigging cartels," FSES Working Papers 519, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
- Brown, David P. & Eckert, Andrew & Silveira, Douglas, 2023. "Screening for Collusion in Wholesale Electricity Markets: A Review of the Literature," Working Papers 2023-7, University of Alberta, Department of Economics.
- Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020.
"Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation,"
ZEW Discussion Papers
20-052, ZEW - Leibniz Centre for European Economic Research.
- Robert Clark & Decio Coviello & Adriano De Leverano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," Working Paper 1446, Economics Department, Queen's University.
- Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
- Huber, Martin & Imhof, David, 2019.
"Machine learning with screens for detecting bid-rigging cartels,"
International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
- Huber, Martin & Imhof, David, 2018. "Machine Learning with Screens for Detecting Bid-Rigging Cartels," FSES Working Papers 494, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Garcia Pires, Armando J. & Skjeret, Frode, 2023. "Screening for partial collusion in retail electricity markets," Energy Economics, Elsevier, vol. 117(C).
- Hannes Wallimann & Silvio Sticher, 2024. "How to Use Data Science in Economics -- a Classroom Game Based on Cartel Detection," Papers 2401.14757, arXiv.org.
- David Imhof & Yavuz Karagök & SAMUEL RUTZ, 2017. "Screening for Bid-rigging. Does it Work?," Working Papers 2017-09, CRESE.
- Kurdoglu, Berkay & Yucel, Eray, 2022. "A Cointegration-based cartel screen for detecting collusion," MPRA Paper 113888, University Library of Munich, Germany.
- Imhof, David, 2017. "Simple Statistical Screens to Detect Bid Rigging," FSES Working Papers 484, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Imhof, David & Karagök, Yavuz & Rutz, Samuel, 2016. "Screening for bid-rigging - does it work?," FSES Working Papers 468, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-05-22 (Big Data)
- NEP-CMP-2023-05-22 (Computational Economics)
- NEP-COM-2023-05-22 (Industrial Competition)
- NEP-REG-2023-05-22 (Regulation)
- NEP-TRE-2023-05-22 (Transport Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.11888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.