Detecting bid-rigging coalitions in different countries and auction formats
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kai Hüschelrath & Tobias Veith, 2014.
"Cartel Detection in Procurement Markets,"
Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 35(6), pages 404-422, September.
- Hüschelrath, Kai & Veith, Tobias, 2011. "Cartel detection in procurement markets," ZEW Discussion Papers 11-066, ZEW - Leibniz Centre for European Economic Research.
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- Patrick Bajari & Lixin Ye, 2003.
"Deciding Between Competition and Collusion,"
The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 971-989, November.
- Patrick Bajari & Lixin Ye, 2001. "Deciding Between Competition and Collusion," Working Papers 01008, Stanford University, Department of Economics.
- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Porter, Robert H & Zona, J Douglas, 1993.
"Detection of Bid Rigging in Procurement Auctions,"
Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 518-538, June.
- Robert H. Porter & J. Douglas Zona, 1992. "Detection of Bid Rigging in Procurement Auctions," NBER Working Papers 4013, National Bureau of Economic Research, Inc.
- Imhof, David, 2017. "Econometric tests to detect bid-rigging cartels: does it work?," FSES Working Papers 483, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Aryal, Gaurab & Gabrielli, Maria F., 2013.
"Testing for collusion in asymmetric first-price auctions,"
International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 26-35.
- Gaurab Aryal & Maria F. Gabrielli, 2011. "Testing for Collusion in Asymmetric First-Price Auctions," ANU Working Papers in Economics and Econometrics 2011-564, Australian National University, College of Business and Economics, School of Economics.
- Robert Clark & Decio Coviello & Jean-Fran�ois Gauthier & Art Shneyerov, 2018.
"Bid Rigging and Entry Deterrence in Public Procurement: Evidence from an Investigation into Collusion and Corruption in Quebec,"
The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(3), pages 301-363.
- Robert Clark & Decio Coviello & Jean-Francois Gauthier & Art Shneyerov, 2018. "Bid Rigging And Entry Deterrence In Public Procurement: Evidence From An Investigation Into Collusion And Corruption In Quebec," Working Paper 1401, Economics Department, Queen's University.
- Juan Jiménez & Jordi Perdiguero, 2012.
"Does Rigidity of Prices Hide Collusion?,"
Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 223-248, November.
- Juan Luis Jiménez & Jordi Perdiguero, 2011. "Does Rigidity of Prices Hide Collusion?," IREA Working Papers 201120, University of Barcelona, Research Institute of Applied Economics, revised Oct 2011.
- Clark, Robert & Coviello, Decio & Gauthier, Jean-Francois & Shneyerov, Art, 2018. "Evidence from an investigation into collusion and corruption in Quebec," Queen's Economics Department Working Papers 274727, Queen's University - Department of Economics.
- Huber, Martin & Imhof, David, 2019.
"Machine learning with screens for detecting bid-rigging cartels,"
International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
- Huber, Martin & Imhof, David, 2018. "Machine Learning with Screens for Detecting Bid-Rigging Cartels," FSES Working Papers 494, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Rieko Ishii, 2007.
"Collusion in Repeated Procurement Auction: a Study of Paving Market in Japan,"
Discussion Papers in Economics and Business
07-16, Osaka University, Graduate School of Economics.
- Rieko Ishii, 2008. "Collusion in Repeated Procurement Auction: A Study of a Paving Market in Japan," ISER Discussion Paper 0710, Institute of Social and Economic Research, Osaka University.
- Mats A. Bergman & Johan Lundberg & Sofia Lundberg & Johan Y. Stake, 2020. "Interactions Across Firms and Bid Rigging," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 107-130, February.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan M. Ortner, 2019.
"Data Driven Regulation: Theory and Application to Missing Bids,"
NBER Working Papers
25654, National Bureau of Economic Research, Inc.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2019. "Data Driven Regulation: Theory and Application to Missing Bids," Boston University - Department of Economics - Working Papers Series WP2019-04, Boston University - Department of Economics.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Ricardo Carvalho Lima & Guilherme Mendes Resende, 2021. "Using the Moran’s I to detect bid rigging in Brazilian procurement auctions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(2), pages 237-254, April.
- David Imhof & Yavuz Karagök & Samuel Rutz, 2018. "Screening For Bid Rigging—Does It Work?," Journal of Competition Law and Economics, Oxford University Press, vol. 14(2), pages 235-261.
- Timothy G. Conley & Francesco Decarolis, 2016. "Detecting Bidders Groups in Collusive Auctions," American Economic Journal: Microeconomics, American Economic Association, vol. 8(2), pages 1-38, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hannes Wallimann & Silvio Sticher, 2024. "How to Use Data Science in Economics -- a Classroom Game Based on Cartel Detection," Papers 2401.14757, arXiv.org.
- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Wallimann, Hannes & Sticher, Silvio, 2023. "On suspicious tracks: Machine-learning based approaches to detect cartels in railway-infrastructure procurement," Transport Policy, Elsevier, vol. 143(C), pages 121-131.
- Lucas Gomes & Jannis Kueck & Mara Mattes & Martin Spindler & Alexey Zaytsev, 2024. "Collusion Detection with Graph Neural Networks," Papers 2410.07091, arXiv.org.
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
- Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
- Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
- Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hannes Wallimann & David Imhof & Martin Huber, 2023.
"A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
- Hannes Wallimann & David Imhof & Martin Huber, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," Papers 2004.05629, arXiv.org.
- Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
- Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
- Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
- Brown, David P. & Eckert, Andrew & Silveira, Douglas, 2023. "Screening for collusion in wholesale electricity markets: A literature review," Utilities Policy, Elsevier, vol. 85(C).
- Huber, Martin & Imhof, David, 2023. "Flagging cartel participants with deep learning based on convolutional neural networks," International Journal of Industrial Organization, Elsevier, vol. 89(C).
- Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020.
"Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation,"
ZEW Discussion Papers
20-052, ZEW - Leibniz Centre for European Economic Research.
- Robert Clark & Decio Coviello & Adriano De Leverano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," Working Paper 1446, Economics Department, Queen's University.
- Martin Huber & David Imhof & Rieko Ishii, 2022.
"Transnational machine learning with screens for flagging bid‐rigging cartels,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
- Huber, Martin & Imhof, David, 2020. "Transnational machine learning with screens for flagging bid-rigging cartels," FSES Working Papers 519, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
- Huber, Martin & Imhof, David, 2019.
"Machine learning with screens for detecting bid-rigging cartels,"
International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
- Huber, Martin & Imhof, David, 2018. "Machine Learning with Screens for Detecting Bid-Rigging Cartels," FSES Working Papers 494, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Wallimann, Hannes & Sticher, Silvio, 2023. "On suspicious tracks: Machine-learning based approaches to detect cartels in railway-infrastructure procurement," Transport Policy, Elsevier, vol. 143(C), pages 121-131.
- Garcia Pires, Armando J. & Skjeret, Frode, 2023. "Screening for partial collusion in retail electricity markets," Energy Economics, Elsevier, vol. 117(C).
- Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- Brown, David P. & Eckert, Andrew & Silveira, Douglas, 2023. "Screening for Collusion in Wholesale Electricity Markets: A Review of the Literature," Working Papers 2023-7, University of Alberta, Department of Economics.
- de Leverano, Adriano, 2019. "Collusion through market sharing agreements: Evidence from Quebec's road paving market," ZEW Discussion Papers 19-053, ZEW - Leibniz Centre for European Economic Research.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2022. "Robust Screens for Noncompetitive Bidding in Procurement Auctions," Econometrica, Econometric Society, vol. 90(1), pages 315-346, January.
- Imhof, David, 2017. "Simple Statistical Screens to Detect Bid Rigging," FSES Working Papers 484, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Huang, Yangguang, 2019. "An empirical study of scoring auctions and quality manipulation corruption," European Economic Review, Elsevier, vol. 120(C).
- Johannes Wachs & J'anos Kert'esz, 2019. "A network approach to cartel detection in public auction markets," Papers 1906.08667, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-05-10 (Big Data)
- NEP-CMP-2021-05-10 (Computational Economics)
- NEP-DES-2021-05-10 (Economic Design)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.00337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.