IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.12577.html
   My bibliography  Save this paper

Integrating an agent-based behavioral model in microtransit forecasting and revenue management

Author

Listed:
  • Xiyuan Ren
  • Joseph Y. J. Chow
  • Venktesh Pandey
  • Linfei Yuan

Abstract

As an IT-enabled multi-passenger mobility service, microtransit has the potential to improve accessibility, reduce congestion, and enhance flexibility in transportation options. However, due to its heterogeneous impacts on different communities and population segments, there is a need for better tools in microtransit forecast and revenue management, especially when actual usage data are limited. We propose a novel framework based on an agent-based mixed logit model estimated with microtransit usage data and synthetic trip data. The framework involves estimating a lower-branch mode choice model with synthetic trip data, combining lower-branch parameters with microtransit data to estimate an upper-branch ride pass subscription model, and applying the nested model to evaluate microtransit pricing and subsidy policies. The framework enables further decision-support analysis to consider diverse travel patterns and heterogeneous tastes of the total population. We test the framework in a case study with synthetic trip data from Replica Inc. and microtransit data from Arlington Via. The lower-branch model result in a rho-square value of 0.603 on weekdays and 0.576 on weekends. Predictions made by the upper-branch model closely match the marginal subscription data. In a ride pass pricing policy scenario, we show that a discount in weekly pass (from $25 to $18.9) and monthly pass (from $80 to $71.5) would surprisingly increase total revenue by $102/day. In an event- or place-based subsidy policy scenario, we show that a 100% fare discount would reduce 80 car trips during peak hours at AT&T Stadium, requiring a subsidy of $32,068/year.

Suggested Citation

  • Xiyuan Ren & Joseph Y. J. Chow & Venktesh Pandey & Linfei Yuan, 2024. "Integrating an agent-based behavioral model in microtransit forecasting and revenue management," Papers 2408.12577, arXiv.org.
  • Handle: RePEc:arx:papers:2408.12577
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.12577
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas De Vos & Patricia L. Mokhtarian & Tim Schwanen & Veronique Van Acker & Frank Witlox, 2016. "Travel mode choice and travel satisfaction: bridging the gap between decision utility and experienced utility," Transportation, Springer, vol. 43(5), pages 771-796, September.
    2. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    3. Christin Hoffmann & Charles Abraham & Mathew P. White & Susan Ball & Stephen M. Skippon, 2017. "What cognitive mechanisms predict travel mode choice? A systematic review with meta-analysis," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 631-652, September.
    4. Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).
    5. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiyuan Ren & Joseph Y. J. Chow & Prateek Bansal, 2023. "Estimating a k-modal nonparametric mixed logit model with market-level data," Papers 2309.13159, arXiv.org, revised Aug 2024.
    2. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    3. Florian Heiss & Stephan Hetzenecker & Maximilian Osterhaus, 2019. "Nonparametric Estimation of the Random Coefficients Model: An Elastic Net Approach," Papers 1909.08434, arXiv.org, revised Sep 2019.
    4. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    5. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    6. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    7. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    8. Daziano, Ricardo A., 2020. "Flexible customer willingness to pay for bundled smart home energy products and services," Resource and Energy Economics, Elsevier, vol. 61(C).
    9. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    10. Hudyeron Rocha & António Lobo & José Pedro Tavares & Sara Ferreira, 2023. "Exploring Modal Choices for Sustainable Urban Mobility: Insights from the Porto Metropolitan Area in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    11. Srikanth Jagabathula & Lakshminarayanan Subramanian & Ashwin Venkataraman, 2020. "A Conditional Gradient Approach for Nonparametric Estimation of Mixing Distributions," Management Science, INFORMS, vol. 66(8), pages 3635-3656, August.
    12. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    13. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    14. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2019. "Nonparametric estimation of the random coefficients model: An elastic net approach," Ruhr Economic Papers 824, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Olivier Allais; & Fabrice Etile; & Sebastien Lecocq, 2012. "Mandatory labelling, nutritional taxes and market forces: An empirical evaluation of fat policies in the French fromage blanc and yogurt market," Health, Econometrics and Data Group (HEDG) Working Papers 12/14, HEDG, c/o Department of Economics, University of York.
    16. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2022. "Nonparametric estimation of the random coefficients model: An elastic net approach," Journal of Econometrics, Elsevier, vol. 229(2), pages 299-321.
    17. Sung-Pil Hong & Kyung Min Kim & Suk-Joon Ko, 2021. "Estimating heterogeneous agent preferences by inverse optimization in a randomized nonatomic game," Annals of Operations Research, Springer, vol. 307(1), pages 207-228, December.
    18. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    19. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    20. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.12577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.