IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14765-d1257791.html
   My bibliography  Save this article

Exploring Modal Choices for Sustainable Urban Mobility: Insights from the Porto Metropolitan Area in Portugal

Author

Listed:
  • Hudyeron Rocha

    (CITTA—Centro de Investigação do Território, Transportes e Ambiente, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal)

  • António Lobo

    (CITTA—Centro de Investigação do Território, Transportes e Ambiente, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal)

  • José Pedro Tavares

    (CITTA—Centro de Investigação do Território, Transportes e Ambiente, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal)

  • Sara Ferreira

    (CITTA—Centro de Investigação do Território, Transportes e Ambiente, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal)

Abstract

Efficient and sustainable urban mobility is critical for contemporary cities, and understanding the factors influencing modal choices is essential for addressing transportation challenges in metropolitan areas. This study focuses on the Porto Metropolitan Area (AMP) in Portugal and aims to gain insights into these factors. Using data from the last mobility survey (IMob) conducted in 2017, a multinomial logit (MNL) model is used to analyze individual modal choices amongst private motorized vehicles (PMVs), public transport (PT), and active modes (AMs). The findings unveiled that demographic, socioeconomic, and travel-related characteristics substantially influence individual modal choices within the studied area. Moreover, probability scenarios highlight the importance of financial considerations, environmental consciousness, and accessibility to public transport in promoting sustainable transportation options. These insights have significant implications for policymakers and stakeholders involved in urban planning and transportation management. This study contributes to the literature by providing valuable insights into individuals’ transportation preferences and behaviors, facilitating decision-making based on evidence for infrastructure improvements and targeted interventions. By promoting sustainable transportation alternatives and reducing reliance on PMVs, this study aims to enhance the livability and sustainability of the AMP, aligning with long-term sustainability goals.

Suggested Citation

  • Hudyeron Rocha & António Lobo & José Pedro Tavares & Sara Ferreira, 2023. "Exploring Modal Choices for Sustainable Urban Mobility: Insights from the Porto Metropolitan Area in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14765-:d:1257791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas De Vos & Patricia L. Mokhtarian & Tim Schwanen & Veronique Van Acker & Frank Witlox, 2016. "Travel mode choice and travel satisfaction: bridging the gap between decision utility and experienced utility," Transportation, Springer, vol. 43(5), pages 771-796, September.
    2. Kamargianni, Maria, 2015. "Investigating next generation's cycling ridership to promote sustainable mobility in different types of cities," Research in Transportation Economics, Elsevier, vol. 53(C), pages 45-55.
    3. Idris, Ahmed Osman & Nurul Habib, Khandker M. & Shalaby, Amer, 2015. "An investigation on the performances of mode shift models in transit ridership forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 551-565.
    4. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    5. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    6. Prieto, Marc & Baltas, George & Stan, Valentina, 2017. "Car sharing adoption intention in urban areas: What are the key sociodemographic drivers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 218-227.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    8. Hudyeron Rocha & Manuel Filgueiras & José Pedro Tavares & Sara Ferreira, 2023. "Public Transport Usage and Perceived Service Quality in a Large Metropolitan Area: The Case of Porto," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    9. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    10. S., Minal & Chalumuri (Ch.), Ravi Sekhar, 2016. "Commuter's sensitivity in mode choice: An empirical study of New Delhi," Journal of Transport Geography, Elsevier, vol. 57(C), pages 207-217.
    11. Mingwei He & Jianbo Li & Zhuangbin Shi & Yang Liu & Chunyan Shuai & Jie Liu, 2022. "Exploring the Nonlinear and Threshold Effects of Travel Distance on the Travel Mode Choice across Different Groups: An Empirical Study of Guiyang, China," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    12. Zaher Youssef & Habib Alshuwaikhat & Imran Reza, 2021. "Modeling the Modal Shift towards a More Sustainable Transport by Stated Preference in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    13. Rafael Maldonado-Hinarejos & Aruna Sivakumar & John Polak, 2014. "Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach," Transportation, Springer, vol. 41(6), pages 1287-1304, November.
    14. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    15. Guerra, Erick & Caudillo, Camilo & Monkkonen, Paavo & Montejano, Jorge, 2018. "Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas," Transport Policy, Elsevier, vol. 69(C), pages 98-105.
    16. Zhang, Junyi & Timmermans, Harry & Borgers, Aloys & Wang, Donggen, 2004. "Modeling traveler choice behavior using the concepts of relative utility and relative interest," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 215-234, March.
    17. Lu, Xiao-Shan & Liu, Tian-Liang & Huang, Hai-Jun, 2015. "Pricing and mode choice based on nested logit model with trip-chain costs," Transport Policy, Elsevier, vol. 44(C), pages 76-88.
    18. Tyrinopoulos, Yannis & Antoniou, Constantinos, 2008. "Public transit user satisfaction: Variability and policy implications," Transport Policy, Elsevier, vol. 15(4), pages 260-272, July.
    19. Aaron Gutiérrez & Daniel Miravet & Òscar Saladié & Salvador Anton Clavé, 2019. "Transport Mode Choice by Tourists Transferring from a Peripheral High-Speed Rail Station to Their Destinations: Empirical Evidence from Costa Daurada," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    20. Ferreira, Sara & Amorim, Marco & Lobo, António & Kern, Mira & Fanderl, Nora & Couto, António, 2022. "Travel mode preferences among German commuters over the course of COVID-19 pandemic," Transport Policy, Elsevier, vol. 126(C), pages 55-64.
    21. Hickman, Robin & Hall, Peter & Banister, David, 2013. "Planning more for sustainable mobility," Journal of Transport Geography, Elsevier, vol. 33(C), pages 210-219.
    22. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    23. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    24. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    25. Thamires Ferreira Schubert & Elisa Henning & Simone Becker Lopes, 2020. "Analysis of the Possibility of Transport Mode Switch: A Case Study for Joinville Students," Sustainability, MDPI, vol. 12(13), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mudassar Shafiq & Hudyeron Rocha & António Couto & Sara Ferreira, 2024. "A Clustering Approach for Analyzing Access to Public Transportation and Destinations," Sustainability, MDPI, vol. 16(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaplan, Sigal & Shiftan, Yoram & Bekhor, Shlomo, 2012. "Development and estimation of a semi-compensatory model with a flexible error structure," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 291-304.
    2. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2019. "The relationship between norms, satisfaction and public transport use: A comparison across six European cities using structural equation modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 37-57.
    3. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    4. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    5. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    6. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    9. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    10. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    11. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    12. Laura Eboli & Gabriella Mazzulla, 2014. "Investigating the heterogeneity of bus users' preferences through discrete choice modelling," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(8), pages 695-710, December.
    13. Cao Nguyen & Kazushi Sano & Tu Tran & Tan Doan, 2013. "Firm relocation patterns incorporating spatial interactions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(3), pages 685-703, June.
    14. Al-Garawi, Najah & Kamargianni, Maria, 2021. "Women's modal switching behavior since driving is allowed in Saudi Arabia," Journal of Transport Geography, Elsevier, vol. 96(C).
    15. Hudyeron Rocha & Manuel Filgueiras & José Pedro Tavares & Sara Ferreira, 2023. "Public Transport Usage and Perceived Service Quality in a Large Metropolitan Area: The Case of Porto," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    16. Lahoz, Lorena Torres & Pereira, Francisco Camara & Sfeir, Georges & Arkoudi, Ioanna & Monteiro, Mayara Moraes & Azevedo, Carlos Lima, 2023. "Attitudes and Latent Class Choice Models using Machine Learning," Journal of choice modelling, Elsevier, vol. 49(C).
    17. Sun, Fan & Jin, Minjie & Zhang, Tao & Huang, Wencheng, 2022. "Satisfaction differences in bus traveling among low-income individuals before and after COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 311-332.
    18. Yao, Di & Xu, Liqun & Zhang, Chunqin & Li, Jinpei, 2021. "Revisiting the interactions between bus service quality, car ownership and mode use: A case study in Changzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 329-344.
    19. Jiageng, Niu & Lanlan, Zheng & Xianghong, Li, 2022. "A study on the trip behavior of shared bicycles and shared electric bikes in Chinese universities based on NL model—Henan Polytechnic University as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Shaaban, Khaled & Kim, Inhi, 2016. "Assessment of the taxi service in Doha," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 223-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14765-:d:1257791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.