IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v47y2023ics1755534522000537.html
   My bibliography  Save this article

Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms

Author

Listed:
  • Swait, Joffre

Abstract

When estimating random coefficients models from choice data, decisions relating to the multivariate density function assumed to describe preference heterogeneity across the population raise questions about stochastic (in)dependence between preference dimensions, uni- vs. multi-modality, potential point masses, bounds and/or constraints on support regions, among other concerns. Parametric representations of population distributions have generally implied uncomfortable compromises to achieve estimation tractability. It would seem preferable to sidestep such issues by estimating individual preferences in a distribution-free manner, but this freedom of form implies a large number of parameters since we lose the parsimony enabled by parametric densities and must deal directly with estimation of individual decision maker preferences. I propose a hybrid distribution-free estimator for individual parameter logit models that uses a genetic algorithm as first stage, the solution from which becomes a starting point for a gradient-based search to obtain the final posterior maximum likelihood estimates of individual preferences. This estimator is described in detail, its parameter recovery capability is tested with Monte Carlo data generation simulations, and a case study is developed in some detail to illustrate its use in policy analysis. The estimator can be applied to both stated and revealed preference data, requiring only that sufficient choice replications be available for individual observation units consistent with extant estimation methods. Computational experience shows the estimator to require CPU times comparable to extant simulation-based estimation methods, meaning that its use is practical for the exploration of the parameter space through multiple trials.

Suggested Citation

  • Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).
  • Handle: RePEc:eee:eejocm:v:47:y:2023:i:c:s1755534522000537
    DOI: 10.1016/j.jocm.2022.100396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534522000537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2022.100396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swait, Joffre, 2009. "Choice models based on mixed discrete/continuous PDFs," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 766-783, August.
    2. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    3. Swait, Joffre & Adamowicz, Wiktor, 2001. "The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(1), pages 135-148, June.
    4. Johnson, Eric J & Meyer, Robert J, 1984. "Compensatory Choice Models of Noncompensatory Processes: The Effect of Varying Context," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 11(1), pages 528-541, June.
    5. Vikas Soekhai & Esther W. Bekker-Grob & Alan R. Ellis & Caroline M. Vass, 2019. "Discrete Choice Experiments in Health Economics: Past, Present and Future," PharmacoEconomics, Springer, vol. 37(2), pages 201-226, February.
    6. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    7. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    8. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    9. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    11. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    12. Kenneth E. Train, 1998. "Recreation Demand Models with Taste Differences over People," Land Economics, University of Wisconsin Press, vol. 74(2), pages 230-239.
    13. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    14. Chatterjee, Sangit & Laudato, Matthew & Lynch, Lucy A., 1996. "Genetic algorithms and their statistical applications: an introduction," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 633-651, October.
    15. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    16. Mebane Jr., Walter R. & Sekhon, Jasjeet S., 2011. "Genetic Optimization Using Derivatives: The rgenoud Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i11).
    17. McFadden, Daniel, 2022. "Instability in mixed logit demand models," Journal of choice modelling, Elsevier, vol. 43(C).
    18. Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.
    19. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    20. Andrew Daly & Stephane Hess & Kenneth Train, 2012. "Assuring finite moments for willingness to pay in random coefficient models," Transportation, Springer, vol. 39(1), pages 19-31, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyuan Ren & Joseph Y. J. Chow & Venktesh Pandey & Linfei Yuan, 2024. "Integrating an agent-based behavioral model in microtransit forecasting and revenue management," Papers 2408.12577, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    3. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    4. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    5. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    6. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    7. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    8. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    9. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).
    10. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).
    11. Mariel, Petr & Ayala, Amaya de & Hoyos, David & Abdullah, Sabah, 2013. "Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment," Journal of choice modelling, Elsevier, vol. 7(C), pages 44-57.
    12. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    13. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    14. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    15. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    16. Anderson, Christopher M. & Das, Chhandita & Tyrrell, Timothy J., 2006. "Parking preferences among tourists in Newport, Rhode Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 334-353, May.
    17. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    18. Lee, Han Bum & McNamara, Paul E., 2017. "Deconcentrating the poor via public housing policy: What really matters?," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 67-78.
    19. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    20. Rudolph, Christian, 2016. "How may incentives for electric cars affect purchase decisions?," Transport Policy, Elsevier, vol. 52(C), pages 113-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:47:y:2023:i:c:s1755534522000537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.