Cross-border Commodity Pricing Strategy Optimization via Mixed Neural Network for Time Series Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Miao Wang & Yunfeng Zhang & Chao Qin & Peipei Liu & Qiuyue Zhang & Rajesh Kaluri, 2022. "Option Pricing Model Combining Ensemble Learning Methods and Network Learning Structure," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, October.
- Balima, Hippolyte W. & Sokolova, Anna, 2021.
"IMF programs and economic growth: A meta-analysis,"
Journal of Development Economics, Elsevier, vol. 153(C).
- Hippolyte Balima & Anna Sokolova, 2020. "IMF Programs And Economic Growth: A Meta-Analysis," HSE Working papers WP BRP 241/EC/2020, National Research University Higher School of Economics.
- Hippolyte Balima & Anna Sokolova, 2021. "IMF programs and economic growth: A meta-analysis," Post-Print hal-03557677, HAL.
- Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anna Sokolova, 2023.
"Marginal Propensity to Consume and Unemployment: a Meta-analysis,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 813-846, December.
- Anna Sokolova, 2023. "Code and data files for "Marginal Propensity to Consume and Unemployment: a Meta-analysis"," Computer Codes 23-112, Review of Economic Dynamics.
- Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
- Eduardo Abi Jaber & Shaun & Li, 2024. "Volatility models in practice: Rough, Path-dependent or Markovian?," Papers 2401.03345, arXiv.org.
- Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
- Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Bomprezzi, Pietro & Marchesi, Silvia, 2023.
"A firm level approach on the effects of IMF programs,"
Journal of International Money and Finance, Elsevier, vol. 132(C).
- Silvia Marchesi & Pietro Bomprezzi, 2021. "A firm level approach on the effects of IMF programs," Working Papers 476, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
- Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
- Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
- Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
- Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
- Mark Kiermayer & Christian Wei{ss}, 2022. "Neural calibration of hidden inhomogeneous Markov chains -- Information decompression in life insurance," Papers 2201.02397, arXiv.org.
- Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org.
- Dangxing Chen & Yuan Gao, 2024. "Attribution Methods in Asset Pricing: Do They Account for Risk?," Papers 2407.08953, arXiv.org.
- Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
- Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.
- Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
- Jan Matas & Jan Pospíšil, 2023. "Robustness and sensitivity analyses of rough Volterra stochastic volatility models," Annals of Finance, Springer, vol. 19(4), pages 523-543, December.
- Pinheiro, Alexandra & Sochirca, Elena & Afonso, Oscar & Neves, Pedro Cunha, 2023. "Automation and off(re)shoring: A meta-regression analysis," International Journal of Production Economics, Elsevier, vol. 264(C).
- Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
- Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-09-23 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.12115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.