Attribution Methods in Asset Pricing: Do They Account for Risk?
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013.
"The leverage effect puzzle: Disentangling sources of bias at high frequency,"
Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
- Yacine Ait-Sahalia & Jianqing Fan & Yingying Li, 2011. "The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency," NBER Working Papers 17592, National Bureau of Economic Research, Inc.
- Friedman, Eric & Moulin, Herve, 1999.
"Three Methods to Share Joint Costs or Surplus,"
Journal of Economic Theory, Elsevier, vol. 87(2), pages 275-312, August.
- Eric Friedman & Moulin, Herve, 1995. "Three Methods to Share Joint Costs or Surplus," Working Papers 95-38, Duke University, Department of Economics.
- Frederick R. Macaulay, 1938. "Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States since 1856," NBER Books, National Bureau of Economic Research, Inc, number maca38-1.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
- Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
- Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Kimmel, Robert L., 2007. "Complex Times: Asset Pricing and Conditional Moments under Non-affine Diffusions," Working Paper Series 2007-6, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Gatzert, Nadine & Martin, Michael, 2012. "Quantifying credit and market risk under Solvency II: Standard approach versus internal model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 649-666.
- Tim Leung & Brian Ward, 2018.
"Dynamic Index Tracking and Risk Exposure Control Using Derivatives,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(2), pages 180-212, March.
- Tim Leung & Brian Ward, 2017. "Dynamic Index Tracking and Risk Exposure Control Using Derivatives," Papers 1705.10454, arXiv.org.
- Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org.
- Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
- Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.
- Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
- Masanori Hirano & Kentaro Minami & Kentaro Imajo, 2023. "Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling," Papers 2307.13217, arXiv.org.
- Abir Sridi & Paul Bilokon, 2023. "Applying Deep Learning to Calibrate Stochastic Volatility Models," Papers 2309.07843, arXiv.org, revised Sep 2023.
- Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
- Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
- Eckhard Platen & Renata Rendek, 2019. "Dynamics of a Well-Diversified Equity Index," Research Paper Series 398, Quantitative Finance Research Centre, University of Technology, Sydney.
- Geske, Robert & Subrahmanyam, Avanidhar & Zhou, Yi, 2016. "Capital structure effects on the prices of equity call options," Journal of Financial Economics, Elsevier, vol. 121(2), pages 231-253.
- Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
- Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
- Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2024-09-02 (Computational Economics)
- NEP-RMG-2024-09-02 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.08953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.