IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.14521.html
   My bibliography  Save this paper

A Space Mapping approach for the calibration of financial models with the application to the Heston model

Author

Listed:
  • Anna Clevenhaus
  • Claudia Totzeck
  • Matthias Ehrhardt

Abstract

We present a novel approach for parameter calibration of the Heston model for pricing an Asian put option, namely space mapping. Since few parameters of the Heston model can be directly extracted from real market data, calibration to real market data is implicit and therefore a challenging task. In addition, some of the parameters in the model are non-linear, which makes it difficult to find the global minimum of the optimization problem within the calibration. Our approach is based on the idea of space mapping, exploiting the residuum of a coarse surrogate model that allows optimization and a fine model that needs to be calibrated. In our case, the pricing of an Asian option using the Heston model SDE is the fine model, and the surrogate is chosen to be the Heston model PDE pricing a European option. We formally derive a gradient descent algorithm for the PDE constrained calibration model using well-known techniques from optimization with PDEs. Our main goal is to provide evidence that the space mapping approach can be useful in financial calibration tasks. Numerical results underline the feasibility of our approach.

Suggested Citation

  • Anna Clevenhaus & Claudia Totzeck & Matthias Ehrhardt, 2025. "A Space Mapping approach for the calibration of financial models with the application to the Heston model," Papers 2501.14521, arXiv.org.
  • Handle: RePEc:arx:papers:2501.14521
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.14521
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    2. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    3. Ferreiro-Ferreiro, Ana María & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2020. "A new calibration of the Heston Stochastic Local Volatility Model and its parallel implementation on GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 467-486.
    4. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    8. Long Teng & Matthias Ehrhardt & Michael Günther, 2016. "On The Heston Model With Stochastic Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-25, September.
    9. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    3. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    4. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
    5. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    6. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    7. Sarit Maitra & Vivek Mishra & Goutam Kr. Kundu & Kapil Arora, 2023. "Integration of Fractional Order Black-Scholes Merton with Neural Network," Papers 2310.04464, arXiv.org, revised Oct 2023.
    8. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    9. Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
    10. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    11. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    12. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Oliver Pfante & Nils Bertschinger, 2019. "Volatility Inference And Return Dependencies In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-44, May.
    14. Amine M. Aboussalah & Xuanze Li & Cheng Chi & Raj Patel, 2024. "The AI Black-Scholes: Finance-Informed Neural Network," Papers 2412.12213, arXiv.org.
    15. Chen Zhang & Giovanni Amici & Marco Morandotti, 2024. "Calibrating the Heston model with deep differential networks," Papers 2407.15536, arXiv.org, revised Jan 2025.
    16. Oliver Pfante & Nils Bertschinger, 2019. "Information-Theoretic Analysis Of Stochastic Volatility Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-21, February.
    17. Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org, revised Apr 2025.
    18. Dangxing Chen & Yuan Gao, 2024. "Attribution Methods in Asset Pricing: Do They Account for Risk?," Papers 2407.08953, arXiv.org.
    19. Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064, arXiv.org.
    20. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.14521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.