IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.14521.html
   My bibliography  Save this paper

A Space Mapping approach for the calibration of financial models with the application to the Heston model

Author

Listed:
  • Anna Clevenhaus
  • Claudia Totzeck
  • Matthias Ehrhardt

Abstract

We present a novel approach for parameter calibration of the Heston model for pricing an Asian put option, namely space mapping. Since few parameters of the Heston model can be directly extracted from real market data, calibration to real market data is implicit and therefore a challenging task. In addition, some of the parameters in the model are non-linear, which makes it difficult to find the global minimum of the optimization problem within the calibration. Our approach is based on the idea of space mapping, exploiting the residuum of a coarse surrogate model that allows optimization and a fine model that needs to be calibrated. In our case, the pricing of an Asian option using the Heston model SDE is the fine model, and the surrogate is chosen to be the Heston model PDE pricing a European option. We formally derive a gradient descent algorithm for the PDE constrained calibration model using well-known techniques from optimization with PDEs. Our main goal is to provide evidence that the space mapping approach can be useful in financial calibration tasks. Numerical results underline the feasibility of our approach.

Suggested Citation

  • Anna Clevenhaus & Claudia Totzeck & Matthias Ehrhardt, 2025. "A Space Mapping approach for the calibration of financial models with the application to the Heston model," Papers 2501.14521, arXiv.org.
  • Handle: RePEc:arx:papers:2501.14521
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.14521
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.14521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.