IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v21y2021i1p11-27.html
   My bibliography  Save this article

Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models

Author

Listed:
  • Blanka Horvath
  • Aitor Muguruza
  • Mehdi Tomas

Abstract

We present a neural network-based calibration method that performs the calibration task within a few milliseconds for the full implied volatility surface. The framework is consistently applicable throughout a range of volatility models—including second-generation stochastic volatility models and the rough volatility family—and a range of derivative contracts. Neural networks in this work are used in an off-line approximation of complex pricing functions, which are difficult to represent or time-consuming to evaluate by other means. The form in which information from available data is extracted and used influences network performance: The grid-based algorithm used for calibration is inspired by representing the implied volatility and option prices as a collection of pixels. We highlight how this perspective opens new horizons for quantitative modelling. The calibration bottleneck posed by a slow pricing of derivative contracts is lifted, and stochastic volatility models (classical and rough) can be handled in great generality as the framework also allows taking the forward variance curve as an input. We demonstrate the calibration performance both on simulated and historical data, on different derivative contracts and on a number of example models of increasing complexity, and also showcase some of the potentials of this approach towards model recognition. The algorithm and examples are provided in the Github repository GitHub: NN-StochVol-Calibrations.

Suggested Citation

  • Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
  • Handle: RePEc:taf:quantf:v:21:y:2021:i:1:p:11-27
    DOI: 10.1080/14697688.2020.1817974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2020.1817974
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2020.1817974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:21:y:2021:i:1:p:11-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.