IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.08595.html
   My bibliography  Save this paper

A robust stochastic control problem with applications to monotone mean-variance problems

Author

Listed:
  • Yuyang Chen
  • Tianjiao Hua
  • Peng Luo

Abstract

This paper studies a robust stochastic control problem with a monotone mean-variance cost functional and random coefficients. The main technique is to find the saddle point through two backward stochastic differential equations (BSDEs) with unbounded coefficients. We further show that the robust stochastic control problem shares the same optimal control and optimal value with the stochastic control problem with a mean-variance cost functional. The results obtained are then applied to monotone mean-variance and mean-variance portfolio selection problems and monotone mean-variance and mean-variance investment-reinsurance problems.

Suggested Citation

  • Yuyang Chen & Tianjiao Hua & Peng Luo, 2024. "A robust stochastic control problem with applications to monotone mean-variance problems," Papers 2408.08595, arXiv.org.
  • Handle: RePEc:arx:papers:2408.08595
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.08595
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Constrained monotone mean-variance problem with random coefficients," Papers 2212.14188, arXiv.org, revised Aug 2023.
    2. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    4. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    5. Xiaomin Shi & Zuo Quan Xu, 2024. "Constrained monotone mean--variance investment-reinsurance under the Cram\'er--Lundberg model with random coefficients," Papers 2405.17841, arXiv.org, revised May 2024.
    6. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomin Shi & Zuo Quan Xu, 2024. "Constrained monotone mean--variance investment-reinsurance under the Cram\'er--Lundberg model with random coefficients," Papers 2405.17841, arXiv.org, revised May 2024.
    2. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.
    3. Yuchen Li & Zongxia Liang & Shunzhi Pang, 2022. "Continuous-Time Monotone Mean-Variance Portfolio Selection in Jump-Diffusion Model," Papers 2211.12168, arXiv.org, revised May 2024.
    4. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Constrained monotone mean-variance problem with random coefficients," Papers 2212.14188, arXiv.org, revised Aug 2023.
    5. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    6. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    7. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    8. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    9. Bekker, Paul A., 2004. "A mean-variance frontier in discrete and continuous time," CCSO Working Papers 200406, University of Groningen, CCSO Centre for Economic Research.
    10. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    11. He, Ying & Dyer, James S. & Butler, John C. & Jia, Jianmin, 2019. "An additive model of decision making under risk and ambiguity," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 78-92.
    12. Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
    13. Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
    15. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    16. M. C. Chiu & D. Li, 2009. "Asset-Liability Management Under the Safety-First Principle," Journal of Optimization Theory and Applications, Springer, vol. 143(3), pages 455-478, December.
    17. Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
    18. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2021. "A volatility smile-based uncertainty index," Annals of Finance, Springer, vol. 17(2), pages 231-246, June.
    19. Wu, Huiling & Li, Zhongfei, 2012. "Multi-period mean–variance portfolio selection with regime switching and a stochastic cash flow," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 371-384.
    20. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.08595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.