IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i1d10.1007_s11009-024-10134-6.html
   My bibliography  Save this article

Optimal Monotone Mean-Variance Problem in a Catastrophe Insurance Model

Author

Listed:
  • Bohan Li

    (Soochow University)

  • Junyi Guo

    (Nankai University)

  • Xiaoqing Liang

    (Hebei University of Technology)

Abstract

This paper explores an optimal investment and reinsurance problem involving both ordinary and catastrophe insurance businesses. The catastrophic events are modeled as following a compound Poisson process, impacting the ordinary insurance business. The claim intensity for the ordinary insurance business is described using a Cox process with a shot-noise intensity, the jump of which is proportional to the size of the catastrophe event. This intensity increases when a catastrophe occurs and then decays over time. The insurer’s objective is to maximize their terminal wealth under the Monotone Mean-Variance (MMV) criterion. In contrast to the classical Mean-Variance (MV) criterion, the MMV criterion is monotonic across its entire domain, aligning better with fundamental economic principles. We first formulate the original MMV optimization problem as an auxiliary zero-sum game. Through solving the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, explicit forms of the value function and optimal strategies are obtained. Additionally, we provide the efficient frontier within the MMV criterion. Several numerical examples are presented to demonstrate the practical implications of the results.

Suggested Citation

  • Bohan Li & Junyi Guo & Xiaoqing Liang, 2025. "Optimal Monotone Mean-Variance Problem in a Catastrophe Insurance Model," Methodology and Computing in Applied Probability, Springer, vol. 27(1), pages 1-37, March.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10134-6
    DOI: 10.1007/s11009-024-10134-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10134-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10134-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Misspecification," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 6, pages 155-216, World Scientific Publishing Co. Pte. Ltd..
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    4. Patricia Born & W. Viscusi, 2006. "The catastrophic effects of natural disasters on insurance markets," Journal of Risk and Uncertainty, Springer, vol. 33(1), pages 55-72, September.
    5. Egami, Masahiko & Young, Virginia R., 2008. "Indifference prices of structured catastrophe (CAT) bonds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 771-778, April.
    6. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    7. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    8. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    9. Andreas Eichler & Gunther Leobacher & Michaela Szolgyenyi, 2016. "Utility Indifference Pricing of Insurance Catastrophe Derivatives," Papers 1607.01110, arXiv.org, revised May 2017.
    10. Łukasz Delong & Russell Gerrard, 2007. "Mean-variance portfolio selection for a non-life insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 339-367, October.
    11. Aleš Černý, 2020. "Semimartingale theory of monotone mean–variance portfolio allocation," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1168-1178, July.
    12. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    13. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    2. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.
    4. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    5. Andreas Eichler & Gunther Leobacher & Michaela Szolgyenyi, 2016. "Utility Indifference Pricing of Insurance Catastrophe Derivatives," Papers 1607.01110, arXiv.org, revised May 2017.
    6. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    7. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    8. Xiaomin Shi & Zuo Quan Xu, 2024. "Constrained monotone mean--variance investment-reinsurance under the Cram\'er--Lundberg model with random coefficients," Papers 2405.17841, arXiv.org, revised May 2024.
    9. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    10. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    11. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal investment and proportional reinsurance in a regime-switching market model under forward preferences," Papers 2106.13888, arXiv.org.
    12. Sarah Bensalem & Nicolás Hernández-Santibáñez & Nabil Kazi-Tani, 2023. "A continuous-time model of self-protection," Finance and Stochastics, Springer, vol. 27(2), pages 503-537, April.
    13. Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2006. "Dynamic variational preferences," Journal of Economic Theory, Elsevier, vol. 128(1), pages 4-44, May.
    14. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    15. Gunther Leobacher & Philip Ngare, 2014. "Utility indifference pricing of derivatives written on industrial loss indexes," Papers 1404.0879, arXiv.org.
    16. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    17. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    18. Fujita, Takahiko & 藤田, 岳彦 & Ishimura, Naoyuki & 石村, 直之 & Tanaka, Daichi, 2008. "An Arbitrage Approach to the Pricing of Catastrophe Options Involving the Cox Process," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 49(2), pages 67-74, December.
    19. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    20. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10134-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.