IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.15905.html
   My bibliography  Save this paper

Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models

Author

Listed:
  • Yang Shen
  • Bin Zou

Abstract

We consider monotone mean-variance (MMV) portfolio selection problems with a conic convex constraint under diffusion models, and their counterpart problems under mean-variance (MV) preferences. We obtain the precommitted optimal strategies to both problems in closed form and find that they coincide, without and with the presence of the conic constraint. This result generalizes the equivalence between MMV and MV preferences from non-constrained cases to a specific constrained case. A comparison analysis reveals that the orthogonality property under the conic convex set is a key to ensuring the equivalence result.

Suggested Citation

  • Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.
  • Handle: RePEc:arx:papers:2205.15905
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.15905
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    2. Xiangyu Cui & Duan Li & Xun Li, 2017. "Mean-Variance Policy For Discrete-Time Cone-Constrained Markets: Time Consistency In Efficiency And The Minimum-Variance Signed Supermartingale Measure," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 471-504, April.
    3. Černý, Aleš & Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2012. "On the computation of optimal monotone mean–variance portfolios via truncated quadratic utility," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 386-395.
    4. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    5. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    6. Nicole Bäuerle & Stefanie Grether, 2015. "Complete markets do not allow free cash flow streams," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(2), pages 137-146, April.
    7. Aleš Černý, 2020. "Semimartingale theory of monotone mean–variance portfolio allocation," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1168-1178, July.
    8. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    9. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    10. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Constrained monotone mean-variance problem with random coefficients," Papers 2212.14188, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Li & Zongxia Liang & Shunzhi Pang, 2022. "Continuous-Time Monotone Mean-Variance Portfolio Selection in Jump-Diffusion Model," Papers 2211.12168, arXiv.org, revised May 2024.
    2. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    3. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    4. Alev{s} v{C}ern'y, 2019. "Semimartingale theory of monotone mean--variance portfolio allocation," Papers 1903.06912, arXiv.org, revised Jan 2020.
    5. Christoph Czichowsky, 2013. "Time-consistent mean-variance portfolio selection in discrete and continuous time," Finance and Stochastics, Springer, vol. 17(2), pages 227-271, April.
    6. Christoph Czichowsky, 2012. "Time-Consistent Mean-Variance Portfolio Selection in Discrete and Continuous Time," Papers 1205.4748, arXiv.org.
    7. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    8. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    9. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    10. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    11. Yang Shen & Bin Zou, 2021. "Mean-Variance Portfolio Selection in Contagious Markets," Papers 2110.09417, arXiv.org.
    12. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    13. Luca De Gennaro Aquino & Sascha Desmettre & Yevhen Havrylenko & Mogens Steffensen, 2024. "Equilibrium control theory for Kihlstrom-Mirman preferences in continuous time," Papers 2407.16525, arXiv.org, revised Oct 2024.
    14. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    15. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    16. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    17. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    18. Stefania Corsaro & Valentina De Simone & Zelda Marino & Francesca Perla, 2020. "$$l_1$$ l 1 -Regularization for multi-period portfolio selection," Annals of Operations Research, Springer, vol. 294(1), pages 75-86, November.
    19. Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.
    20. Cui, Xiangyu & Li, Duan & Shi, Yun, 2017. "Self-coordination in time inconsistent stochastic decision problems: A planner–doer game framework," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 91-113.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.15905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.