IDEAS home Printed from https://ideas.repec.org/p/fam/rpseri/rp48.html
   My bibliography  Save this paper

A Geometric Approach to Multiperiod Mean Variance Optimization of Assets and Liabilities

Author

Listed:
  • Markus LEIPPOLD

    (Swiss Banking Institute, University of Zurich)

  • Fabio TROJANI

    (Institute of Finance, University of Southern Switzerland)

  • Paolo VANINI

    (Institute of Finance, University of Southern Switzerland)

Abstract

We present a geometric approach to discrete time multiperiod mean variance portfolio optimization that largely simplifies the mathematical analysis and the economic interpretation of such model settings. We show that multiperiod mean variance optimal policies can be decomposed in an orthogonal set of basis strategies, each having a clear economic interpretation. This implies that the corresponding multi period mean variance frontiers are spanned by an orthogonal basis of dynamic returns. Specifically, in a k-period model the optimal strategy is a linear combination of a single k-period global minimum second moment strategy and a sequence of k local excess return strategies which expose the dynamic portfolio optimally to each single-period asset excess return. This decomposition is a multi period version of Hansen and Richard (1987) orthogonal representation of single-period mean variance frontiers and naturally extends the basic economic intuition of the static Markowitz model to the multiperiod context. Using the geometric approach to dynamic mean variance optimization we obtain closed form solutions in the i.i.d. setting for portfolios consisting of both assets and liabilities (AL), each modelled by a distinct state variable. As a special case, the solution of the mean variance problem for the asset only case in Li and Ng (2000) follows directly and can be represented in terms of simple products of some single period orthogonal returns. We illustrate the usefulness of our geometric representation of multiperiods optimal policies and mean variance frontiers by discussing specific issued related to AL portfolios: The impact of taking liabilities into account on the implied mean variance frontiers, the quantification of the impact of the investment horizon and the determination of the optimal initial funding ratio.

Suggested Citation

  • Markus LEIPPOLD & Fabio TROJANI & Paolo VANINI, 2002. "A Geometric Approach to Multiperiod Mean Variance Optimization of Assets and Liabilities," FAME Research Paper Series rp48, International Center for Financial Asset Management and Engineering.
  • Handle: RePEc:fam:rpseri:rp48
    as

    Download full text from publisher

    File URL: http://www.swissfinanceinstitute.ch/rp48.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    2. Keith V. Smith, 1967. "A Transition Model For Portfolio Revision," Journal of Finance, American Finance Association, vol. 22(3), pages 425-439, September.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    5. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    6. Henri LOUBERGÉ, & Harris SCHLESINGER, 2001. "Coping with Credit Risk," FAME Research Paper Series rp36, International Center for Financial Asset Management and Engineering.
    7. Grossman, Sanford J. & Vila, Jean-Luc, 1992. "Optimal Dynamic Trading with Leverage Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 151-168, June.
    8. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    9. He, Hua & Pages, Henri F, 1993. "Labor Income, Borrowing Constraints, and Equilibrium Asset Prices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 663-696, October.
    10. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Keel, Alex & Müller, Heinz H., 1995. "Efficient Portfolios in the Asset Liability Context," ASTIN Bulletin, Cambridge University Press, vol. 25(1), pages 33-48, May.
    12. Chen, Andrew H Y & Jen, Frank C & Zionts, Stanley, 1971. "The Optimal Portfolio Revision Policy," The Journal of Business, University of Chicago Press, vol. 44(1), pages 51-61, January.
    13. Henri Loubergé & Harris Schlesinger, 2005. "Coping with credit risk," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(2), pages 118-134, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    2. Guiso, Luigi & Sodini, Paolo, 2013. "Household Finance: An Emerging Field," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1397-1532, Elsevier.
    3. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    4. Ethem Çanakoğlu & Süleyman Özekici, 2009. "Portfolio selection in stochastic markets with exponential utility functions," Annals of Operations Research, Springer, vol. 166(1), pages 281-297, February.
    5. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    6. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    7. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    8. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    9. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    10. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    11. Mehlkopf, R.J., 2011. "Risk sharing with the unborn," Other publications TiSEM fe8a8df6-455f-4624-af10-9, Tilburg University, School of Economics and Management.
    12. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    13. Andreas Fagereng & Charles Gottlieb & Luigi Guiso, 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle," Journal of Finance, American Finance Association, vol. 72(2), pages 705-750, April.
    14. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    15. Leonid Kogan & Raman Uppal, "undated". "Risk Aversion and Optimal Portfolio Policies in Partial and General Equilibrium Economies," Rodney L. White Center for Financial Research Working Papers 13-00, Wharton School Rodney L. White Center for Financial Research.
    16. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    17. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    18. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    19. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    20. Zvi Bodie & Jérôme Detemple & Marcel Rindisbacher, 2009. "Life-Cycle Finance and the Design of Pension Plans," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 249-286, November.

    More about this item

    Keywords

    Assets and Liabilities Portfolios; Minimum-Variance Frontiers; Dynamic Programming; Markowitz Model;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fam:rpseri:rp48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.