IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2007017.html
   My bibliography  Save this paper

D-optimal design of split-split-plot experiments

Author

Listed:
  • BRADLEY, Jones
  • GOOS, Peter

Abstract

In industrial experimentation there is growing interest in studies that span more than one processing step. Convenience often dictates restrictions in randomization in passing from one processing step to another. When the study encompasses three processing steps, this leads to split-split-plot designs. We provide an algorithm for computing D-optimal split-split-plot designs and provide many illustrative examples. We then apply our methods to construct D-optimal alternatives to a previously run split-split-plot design for cheese production.

Suggested Citation

  • BRADLEY, Jones & GOOS, Peter, 2007. "D-optimal design of split-split-plot experiments," Working Papers 2007017, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2007017
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/734733/ae72117e.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. GOOS, Peter, "undated". "The usefulness of optimal design for generating blocked and split-plot response surface experiments," Working Papers 2005033, University of Antwerp, Faculty of Business and Economics.
    2. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
    3. C. J. Brien & R. A. Bailey, 2006. "Multiple randomizations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 571-609, September.
    4. Bradley Jones & Peter Goos, 2007. "A candidate‐set‐free algorithm for generating D‐optimal split‐plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364, May.
    5. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2004. "Designing fractional factorial split‐plot experiments with few whole‐plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 325-339, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loeza-Serrano, S. & Donev, A.N., 2014. "Construction of experimental designs for estimating variance components," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1168-1177.
    2. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    3. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    4. Xiaodong Li & Xu He & Yuanzhen He & Hui Zhang & Zhong Zhang & Dennis K. J. Lin, 2017. "The Design and Analysis for the Icing Wind Tunnel Experiment of a New Deicing Coating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1417-1429, October.
    5. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    6. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
    7. Lin, Chang-Yun & Yang, Po, 2019. "Data-driven multistratum designs with the generalized Bayesian D-D criterion for highly uncertain models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 222-238.
    8. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    9. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    2. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.
    3. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    4. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    5. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    6. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    7. D. R. Cox, 2009. "Randomization in the Design of Experiments," International Statistical Review, International Statistical Institute, vol. 77(3), pages 415-429, December.
    8. K. Chatterjee & C. Koukouvinos, 2021. "Construction of mixed-level supersaturated split-plot designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 949-967, October.
    9. Kalliopi Mylona & Harrison Macharia & Peter Goos, 2013. "Three-level equivalent-estimation split-plot designs based on subset and supplementary difference set designs," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1153-1165.
    10. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    11. Yang, Jianfeng & Zhang, Runchu & Liu, Minqian, 2007. "Construction of fractional factorial split-plot designs with weak minimum aberration," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1567-1573, September.
    12. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    13. Minyang Hu & Shengli Zhao, 2022. "Minimum Aberration Split-Plot Designs Focusing on the Whole Plot Factors," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
    14. ARNOUTS, Heidi & GOOS, Peter, 2008. "Staggered designs for experiments with more than one hard-to-change factor," Working Papers 2008018, University of Antwerp, Faculty of Business and Economics.
    15. K. Chatterjee & C. Koukouvinos & K. Mylona, 2020. "Construction of supersaturated split-plot designs," Statistical Papers, Springer, vol. 61(5), pages 2203-2219, October.
    16. Xiaoxue Han & Jianbin Chen & Min-Qian Liu & Shengli Zhao, 2020. "Asymmetrical split-plot designs with clear effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 779-798, October.
    17. Moein Saleh & Ming-Hung Kao & Rong Pan, 2017. "Design D-optimal event-related functional magnetic resonance imaging experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 73-91, January.
    18. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    19. Steven G. Gilmour & Peter Goos, 2009. "Analysis of data from non‐orthogonal multistratum designs in industrial experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 467-484, September.
    20. M. Arvidsson & P. Kammerlind & A. Hynen & B. Bergman, 2001. "Identification of factors influencing dispersion in split-plot experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 269-283.

    More about this item

    Keywords

    D-optimality; Exchange algorithm; Hard-to-change factors; Multi-stratum design; Split-plot design; Tailor-made design;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2007017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.