IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.15276.html
   My bibliography  Save this paper

Nonlinear Binscatter Methods

Author

Listed:
  • Matias D. Cattaneo
  • Richard K. Crump
  • Max H. Farrell
  • Yingjie Feng

Abstract

Binned scatter plots are a powerful statistical tool for empirical work in the social, behavioral, and biomedical sciences. Available methods rely on a quantile-based partitioning estimator of the conditional mean regression function to primarily construct flexible yet interpretable visualization methods, but they can also be used to estimate treatment effects, assess uncertainty, and test substantive domain-specific hypotheses. This paper introduces novel binscatter methods based on nonlinear, possibly nonsmooth M-estimation methods, covering generalized linear, robust, and quantile regression models. We provide a host of theoretical results and practical tools for local constant estimation along with piecewise polynomial and spline approximations, including (i) optimal tuning parameter (number of bins) selection, (ii) confidence bands, and (iii) formal statistical tests regarding functional form or shape restrictions. Our main results rely on novel strong approximations for general partitioning-based estimators covering random, data-driven partitions, which may be of independent interest. We demonstrate our methods with an empirical application studying the relation between the percentage of individuals without health insurance and per capita income at the zip-code level. We provide general-purpose software packages implementing our methods in Python, R, and Stata.

Suggested Citation

  • Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Yingjie Feng, 2024. "Nonlinear Binscatter Methods," Papers 2407.15276, arXiv.org.
  • Handle: RePEc:arx:papers:2407.15276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.15276
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crump, Richard K. & Eusepi, Stefano & Giannoni, Marc & Şahin, Ayşegül, 2024. "The unemployment–inflation trade-off revisited: The Phillips curve in COVID times," Journal of Monetary Economics, Elsevier, vol. 145(S).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    2. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    3. Michael Jansson & Demian Pouzo, 2017. "Towards a General Large Sample Theory for Regularized Estimators," Papers 1712.07248, arXiv.org, revised Jul 2020.
    4. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    5. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    6. Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
    7. Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.
    8. Victor Chernozhukov & Vira Semenova, 2018. "Simultaneous inference for Best Linear Predictor of the Conditional Average Treatment Effect and other structural functions," CeMMAP working papers CWP40/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Christoph Breunig & Stefan Hoderlein, 2018. "Specification testing in random coefficient models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1371-1417, November.
    10. Adam Lee, 2024. "Locally Regular and Efficient Tests in Non-Regular Semiparametric Models," Papers 2403.05999, arXiv.org, revised Dec 2024.
    11. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    12. Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
    13. Peter Horvath & Jia Li & Zhipeng Liao & Andrew J. Patton, 2022. "A consistent specification test for dynamic quantile models," Quantitative Economics, Econometric Society, vol. 13(1), pages 125-151, January.
    14. Lin, Yingqian & Tu, Yundong, 2024. "Functional coefficient cointegration models with Box–Cox transformation," Economics Letters, Elsevier, vol. 234(C).
    15. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
    16. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    17. Qihui Chen & Nikolai Roussanov & Xiaoliang Wang, 2021. "Semiparametric Conditional Factor Models: Estimation and Inference," Papers 2112.07121, arXiv.org, revised Sep 2023.
    18. Yukitoshi Matsushita & Taisuke Otsu & Keisuke Takahata, 2022. "Estimating density ratio of marginals to joint: Applications to causal inference," STICERD - Econometrics Paper Series 619, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
    20. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Jan 2025.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.15276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.