IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.0442.html
   My bibliography  Save this paper

Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results

Author

Listed:
  • Alexandre Belloni
  • Victor Chernozhukov
  • Denis Chetverikov
  • Kengo Kato

Abstract

In applications it is common that the exact form of a conditional expectation is unknown and having flexible functional forms can lead to improvements. Series method offers that by approximating the unknown function based on $k$ basis functions, where $k$ is allowed to grow with the sample size $n$. We consider series estimators for the conditional mean in light of: (i) sharp LLNs for matrices derived from the noncommutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the $L^\infty$ and $L_2$-norms of approximation errors, (iii) maximal inequalities for processes whose entropy integrals diverge, and (iv) strong approximations to series-type processes. These technical tools allow us to contribute to the series literature, specifically the seminal work of Newey (1997), as follows. First, we weaken the condition on the number $k$ of approximating functions used in series estimation from the typical $k^2/n \to 0$ to $k/n \to 0$, up to log factors, which was available only for spline series before. Second, we derive $L_2$ rates and pointwise central limit theorems results when the approximation error vanishes. Under an incorrectly specified model, i.e. when the approximation error does not vanish, analogous results are also shown. Third, under stronger conditions we derive uniform rates and functional central limit theorems that hold if the approximation error vanishes or not. That is, we derive the strong approximation for the entire estimate of the nonparametric function. We derive uniform rates, Gaussian approximations, and uniform confidence bands for a wide collection of linear functionals of the conditional expectation function.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results," Papers 1212.0442, arXiv.org, revised Jun 2015.
  • Handle: RePEc:arx:papers:1212.0442
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.0442
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression," Cowles Foundation Discussion Papers 1923, Cowles Foundation for Research in Economics, Yale University.
    2. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    3. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    4. Gallant, A. Ronald & Souza, Geraldo, 1991. "On the asymptotic normality of Fourier flexible form estimates," Journal of Econometrics, Elsevier, vol. 50(3), pages 329-353, December.
    5. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 44/12, Institute for Fiscal Studies.
    6. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    7. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    8. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    9. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    10. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    11. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    12. Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
    13. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    14. Eastwood, Brian J. & Gallant, A. Ronald, 1991. "Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 7(3), pages 307-340, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "On the asymptotic theory for least squares series: pointwise and uniform results," CeMMAP working papers CWP73/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    3. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    4. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    5. Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
    6. Byunghoon Kang, 2017. "Inference in Nonparametric Series Estimation with Data-Dependent Undersmoothing," Working Papers 170712442, Lancaster University Management School, Economics Department.
    7. Chen, Xiaohong & Liao, Zhipeng, 2014. "Sieve M inference on irregular parameters," Journal of Econometrics, Elsevier, vol. 182(1), pages 70-86.
    8. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    9. Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," CeMMAP working papers 46/14, Institute for Fiscal Studies.
    10. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    11. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    12. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    13. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    14. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    15. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    16. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 44/12, Institute for Fiscal Studies.
    17. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    18. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    19. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    20. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.0442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.