IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.15016.html
   My bibliography  Save this paper

Rethinking Digitalization and Climate: Don't Predict, Mitigate

Author

Listed:
  • Daria Gritsenko
  • Jon Aaen
  • Bent Flyvbjerg

Abstract

Digitalization is a core component of the green transition. Today's focus is on quantifying and pre-dicting the climate effects of digitalization through various life-cycle assessments and baseline sce-nario methodologies. Here we argue that this is a mistake. Most attempts at prediction are based on three implicit assumptions: (a) the digital carbon footprint can be quantified, (b) business-as-usual with episodic change leading to a new era of stability, and (c) investments in digitalization will be delivered within the cost, timeframe, and benefits described in their business cases. We problema-tize each assumption within the context of digitalization and argue that the digital carbon footprint is inherently unpredictable. We build on uncertainty literature to show that even if you cannot predict, you can still mitigate. On that basis, we propose to rethink practice on the digital carbon footprint from prediction to mitigation.

Suggested Citation

  • Daria Gritsenko & Jon Aaen & Bent Flyvbjerg, 2024. "Rethinking Digitalization and Climate: Don't Predict, Mitigate," Papers 2407.15016, arXiv.org.
  • Handle: RePEc:arx:papers:2407.15016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.15016
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan C. T. Bieser & Vlad C. Coroamă, 2021. "Direkte und indirekte Umwelteffekte der Informations- und Kommunikationstechnologie [Direct and indirect environmental effects of information and communication technology]," Sustainability Nexus Forum, Springer, vol. 29(1), pages 1-11, March.
    2. Esther Thiébaud & Lorenz M. Hilty & Mathias Schluep & Heinz W. Böni & Martin Faulstich, 2018. "Where Do Our Resources Go? Indium, Neodymium, and Gold Flows Connected to the Use of Electronic Equipment in Switzerland," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    3. Maria J. Pouri & Lorenz M. Hilty, 2018. "Conceptualizing the Digital Sharing Economy in the Context of Sustainability," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    4. Lena Klaaßen & Christian Stoll, 2021. "Harmonizing corporate carbon footprints," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Kwon, Soongeol, 2020. "Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations," Applied Energy, Elsevier, vol. 276(C).
    6. Jan C. T. Bieser & Lorenz M. Hilty, 2018. "Assessing Indirect Environmental Effects of Information and Communication Technology (ICT): A Systematic Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    7. André Hanelt & René Bohnsack & David Marz & Cláudia Antunes Marante, 2021. "A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change," Journal of Management Studies, Wiley Blackwell, vol. 58(5), pages 1159-1197, July.
    8. Daniel Schien & Paul Shabajee & Mike Yearworth & Chris Preist, 2013. "Modeling and Assessing Variability in Energy Consumption During the Use Stage of Online Multimedia Services," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 800-813, December.
    9. Guido Caniglia & R. Freeth & C. Luederitz & J. Leventon & S. P. West & B. John & D. Peukert & D. J. Lang & H. Wehrden & B. Martín-López & I. Fazey & F. Russo & T. Wirth & M. Schlüter & C. Vogel, 2023. "Practical wisdom and virtue ethics for knowledge co-production in sustainability science," Nature Sustainability, Nature, vol. 6(5), pages 493-501, May.
    10. Bernard Burnes, 2004. "Kurt Lewin and the Planned Approach to Change: A Re‐appraisal," Journal of Management Studies, Wiley Blackwell, vol. 41(6), pages 977-1002, September.
    11. Vlad C. Coroama & Lorenz M. Hilty & Ernst Heiri & Frank M. Horn, 2013. "The Direct Energy Demand of Internet Data Flows," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 680-688, October.
    12. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    13. Eric Williams, 2011. "Environmental effects of information and communications technologies," Nature, Nature, vol. 479(7373), pages 354-358, November.
    14. Lynn H. Kaack & Priya L. Donti & Emma Strubell & George Kamiya & Felix Creutzig & David Rolnick, 2022. "Aligning artificial intelligence with climate change mitigation," Nature Climate Change, Nature, vol. 12(6), pages 518-527, June.
    15. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    16. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    17. Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
    18. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    3. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    4. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    5. Peng, Hua-Rong & Qin, Xiong-Feng, 2024. "Digitalization as a trigger for a rebound effect of electricity use," Energy, Elsevier, vol. 300(C).
    6. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    7. Emad Kazemzadeh & José Alberto Fuinhas & Narges Salehnia & Fariba Osmani, 2023. "The effect of economic complexity, fertility rate, and information and communication technology on ecological footprint in the emerging economies: a two-step stirpat model and panel quantile regressio," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 737-763, February.
    8. Muhammad Ali Raza & Muhammad Imran & Joanna Rosak-Szyrocka & László Vasa & Noor Ul Hadi, 2023. "Organizational Change and Workplace Incivility: Mediated by Stress, Moderated by Emotional Exhaustion," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    9. Baischew, Dajan & Schrade-Grytsenko, Lisa & Sörries, Bernd & Stronzik, Marcus & Wissner, Matthias, 2022. "Ausgewählte Informations- und Kommunikationstechnologien und ihre Auswirkungen auf umweltpolitische Ziele," WIK Discussion Papers 492, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
    10. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    11. Qin Yue & Shiyu Lv, 2024. "Impact of Digital Transformation on Carbon Performance of Industrial Firms Considering Performance–Expectation Gap as a Moderator," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    12. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    13. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    14. Shi, Jianglan & Li, Chao & Li, Huajiao, 2022. "Energy consumption in China's ICT sectors: From the embodied energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    16. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    17. Krishna Kumar Dadsena & Pushpesh Pant & Sanjoy Kumar Paul & Saurabh Pratap, 2024. "Overcoming strategies for supply chain digitization barriers: Implications for sustainable development goals," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3887-3910, July.
    18. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.
    19. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    20. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.15016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.