IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i6p800-813.html
   My bibliography  Save this article

Modeling and Assessing Variability in Energy Consumption During the Use Stage of Online Multimedia Services

Author

Listed:
  • Daniel Schien
  • Paul Shabajee
  • Mike Yearworth
  • Chris Preist

Abstract

In this study, we use an improved, more accurate model to analyze the energy footprint of content downloaded from a major online newspaper by means of various combinations of user devices and access networks. Our results indicate that previous analyses based on average figures for laptops or desktop personal computers predict national and global energy consumption values that are unrealistically high. Additionally, we identify the components that contribute most of the total energy consumption during the use stage of the life cycle of digital services. We find that, depending on the type of user device and access network employed, the data center where the news content originates consumes between 4% and 48% of the total energy consumption when news articles are read and between 2% and 11% when video content is viewed. Similarly, we find that user devices consume between 7% and 90% and 0.7% and 78% for articles and video content, respectively, depending on the type of user device and access network that is employed. Though increasing awareness of the energy consumption by data centers is justified, an analysis of our results shows that for individual users of the online newspaper we studied, energy use by user devices and the third‐generation (3G) mobile network are usually bigger contributors to the service footprint than the datacenters. Analysis of our results also shows that data transfer of video content has a significant energy use on the 3G mobile network, but less so elsewhere. Hence, a strategy of reducing the resolution of video would reduce the energy footprint for individual users who are using mobile devices to access content by the 3G network.

Suggested Citation

  • Daniel Schien & Paul Shabajee & Mike Yearworth & Chris Preist, 2013. "Modeling and Assessing Variability in Energy Consumption During the Use Stage of Online Multimedia Services," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 800-813, December.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:6:p:800-813
    DOI: 10.1111/jiec.12065
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12065
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Fernández-Portillo & Manuel Almodóvar-González & José Luís Coca-Pérez & Héctor Valentín Jiménez-Naranjo, 2019. "Is Sustainable Economic Development Possible Thanks to the Deployment of ICT?," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    2. Hanna Pihkola & Mikko Hongisto & Olli Apilo & Mika Lasanen, 2018. "Evaluating the Energy Consumption of Mobile Data Transfer—From Technology Development to Consumer Behaviour and Life Cycle Thinking," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    3. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    4. Daria Gritsenko & Jon Aaen & Bent Flyvbjerg, 2024. "Rethinking Digitalization and Climate: Don't Predict, Mitigate," Papers 2407.15016, arXiv.org.
    5. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.
    6. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:6:p:800-813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.