IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.13166.html
   My bibliography  Save this paper

Enhancing supply chain security with automated machine learning

Author

Listed:
  • Haibo Wang
  • Lutfu S. Sua
  • Bahram Alidaee

Abstract

The increasing scale and complexity of global supply chains have led to new challenges spanning various fields, such as supply chain disruptions due to long waiting lines at the ports, material shortages, and inflation. Coupled with the size of supply chains and the availability of vast amounts of data, efforts towards tackling such challenges have led to an increasing interest in applying machine learning methods in many aspects of supply chains. Unlike other solutions, ML techniques, including Random Forest, XGBoost, LightGBM, and Neural Networks, make predictions and approximate optimal solutions faster. This paper presents an automated ML framework to enhance supply chain security by detecting fraudulent activities, predicting maintenance needs, and forecasting material backorders. Using datasets of varying sizes, results show that fraud detection achieves an 88% accuracy rate using sampling methods, machine failure prediction reaches 93.4% accuracy, and material backorder prediction achieves 89.3% accuracy. Hyperparameter tuning significantly improved the performance of these models, with certain supervised techniques like XGBoost and LightGBM reaching up to 100% precision. This research contributes to supply chain security by streamlining data preprocessing, feature selection, model optimization, and inference deployment, addressing critical challenges and boosting operational efficiency.

Suggested Citation

  • Haibo Wang & Lutfu S. Sua & Bahram Alidaee, 2024. "Enhancing supply chain security with automated machine learning," Papers 2406.13166, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2406.13166
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.13166
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    2. Michaela Fox & Mike Mitchell & Moira Dean & Christopher Elliott & Katrina Campbell, 2018. "The seafood supply chain from a fraudulent perspective," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 939-963, August.
    3. Ying Liu & Lihua Huang, 2020. "Supply chain finance credit risk assessment using support vector machine–based ensemble improved with noise elimination," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477209, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    2. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    3. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    4. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    5. Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
    6. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    7. Cangyu Jin & Retsef Levi & Qiao Liang & Nicholas Renegar & Stacy Springs & Jiehong Zhou & Weihua Zhou, 2021. "Testing at the Source: Analytics-Enabled Risk-Based Sampling of Food Supply Chains in China," Management Science, INFORMS, vol. 67(5), pages 2985-2996, May.
    8. Nguyen, Ly & Gao, Zhifeng & Anderson, James L., 2022. "Regulating menu information: What do consumers care and not care about at casual and fine dining restaurants for seafood consumption?," Food Policy, Elsevier, vol. 110(C).
    9. Luigi Rombi, 2024. "Handbook of accounting, accountability and governance edited by Garry D. Carnegie and Christopher J. Napier," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 28(3), pages 943-955, September.
    10. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    11. Nerissa C. Brown & Richard M. Crowley & W. Brooke Elliott, 2020. "What Are You Saying? Using topic to Detect Financial Misreporting," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 237-291, March.
    12. Nguyen, Ly & Gao, Zhifeng & Anderson, James L. & House, Lisa A., 2022. "The Impacts of Covid-19 on Consumers’ Willingness to Pay for Information Transparency at Casual and Fine Dining Restaurants," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322463, Agricultural and Applied Economics Association.
    13. Seth Armitage & Ronan Gallagher & Jiaman Xu, 2023. "The elusive relation between pension discount rates and deficits," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 50(7-8), pages 1101-1127, July.
    14. Li, Guowen & Wang, Shuai & Feng, Yuyao, 2024. "Making differences work: Financial fraud detection based on multi-subject perceptions," Emerging Markets Review, Elsevier, vol. 60(C).
    15. Vanessa Heinemann-Heile, 2024. "Using Machine Learning to Predict Firms’ Tax Perception," Working Papers Dissertations 128, Paderborn University, Faculty of Business Administration and Economics.
    16. Paul Geertsema & Helen Lu, 2023. "Relative Valuation with Machine Learning," Journal of Accounting Research, Wiley Blackwell, vol. 61(1), pages 329-376, March.
    17. Mika Ylinen & Mikko Ranta, 2024. "Employer ratings in social media and firm performance: Evidence from an explainable machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 247-276, March.
    18. Stephen Walker, 2022. "Erroneous Erratum to Accounting Fraud Article," Econ Journal Watch, Econ Journal Watch, vol. 19(2), pages 190–203-1, September.
    19. Gao, Wei & Ju, Ming & Yang, Tongyang, 2023. "Severe weather and peer-to-peer farmers’ loan default predictions: Evidence from machine learning analysis," Finance Research Letters, Elsevier, vol. 58(PA).
    20. Jun, So Young & Kim, Dong Sung & Jung, Suk Yoon & Jun, Sang Gyung & Kim, Jong Woo, 2022. "Stock investment strategy combining earnings power index and machine learning," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.13166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.