Using Machine Learning to Predict Firms’ Tax Perception
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
- Seth Armitage & Ronan Gallagher & Jiaman Xu, 2023. "The elusive relation between pension discount rates and deficits," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 50(7-8), pages 1101-1127, July.
- Li, Guowen & Wang, Shuai & Feng, Yuyao, 2024. "Making differences work: Financial fraud detection based on multi-subject perceptions," Emerging Markets Review, Elsevier, vol. 60(C).
- Jun, So Young & Kim, Dong Sung & Jung, Suk Yoon & Jun, Sang Gyung & Kim, Jong Woo, 2022. "Stock investment strategy combining earnings power index and machine learning," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
- Vitali, Sonia & Giuliani, Marco, 2024. "Emerging digital technologies and auditing firms: Opportunities and challenges," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
- Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Achakzai, Muhammad Atif Khan & Juan, Peng, 2022. "Using machine learning Meta-Classifiers to detect financial frauds," Finance Research Letters, Elsevier, vol. 48(C).
- Wang, Yichen & Hu, Jun & Chen, Jia, 2023. "Does Fintech facilitate cross-border M&As? Evidence from Chinese A-share listed firms," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Yasheng Chen & Zhuojun Wu, 2022. "Financial Fraud Detection of Listed Companies in China: A Machine Learning Approach," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Liu, Wanli, 2024. "Digital transformation and earnings opacity:Evidence from China," Finance Research Letters, Elsevier, vol. 69(PA).
- Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
- Stephen Walker, 2021. "Critique of an Article on Machine Learning in the Detection of Accounting Fraud," Econ Journal Watch, Econ Journal Watch, vol. 18(1), pages 1-61–70, March.
- Wang, Delu & Chen, Fan & Mao, Jinqi & Liu, Nannan & Rong, Fangyu, 2022. "Are the official national data credible? Empirical evidence from statistics quality evaluation of China's coal and its downstream industries," Energy Economics, Elsevier, vol. 114(C).
- Kexing Ding & Baruch Lev & Xuan Peng & Ting Sun & Miklos A. Vasarhelyi, 2020. "Machine learning improves accounting estimates: evidence from insurance payments," Review of Accounting Studies, Springer, vol. 25(3), pages 1098-1134, September.
- Li, Jing & Li, Nan & Xia, Tongshui & Guo, Jinjin, 2023. "Textual analysis and detection of financial fraud: Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 126(C).
- Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
- Yousefi, Hamed & Yung, Kenneth & Najand, Mohammad, 2023. "From low resource slack to inflexibility: The share price effect of operational efficiency," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Md Jahidur Rahman & Hongtao Zhu, 2023. "Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(3), pages 3455-3486, September.
- Laure Batz, 2023. "Financial market enforcement in France," European Journal of Law and Economics, Springer, vol. 55(3), pages 409-468, June.
More about this item
Keywords
Tax Rate Perception; Business Taxation; Prediction; XGBoost; Shapley;All these keywords.
JEL classification:
- H25 - Public Economics - - Taxation, Subsidies, and Revenue - - - Business Taxes and Subsidies
- D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
- C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-01-13 (Big Data)
- NEP-CMP-2025-01-13 (Computational Economics)
- NEP-PBE-2025-01-13 (Public Economics)
- NEP-PUB-2025-01-13 (Public Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pdn:dispap:128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WP-WiWi-Info (email available below). General contact details of provider: https://edirc.repec.org/data/fwpadde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.