IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipas1544612323006591.html
   My bibliography  Save this article

Severe weather and peer-to-peer farmers’ loan default predictions: Evidence from machine learning analysis

Author

Listed:
  • Gao, Wei
  • Ju, Ming
  • Yang, Tongyang

Abstract

In theory, climate change affects farmers’ loan default risk because severe weather conditions caused by climate change negatively affect farmlands’ productivity, farmers’ income, and their ability to pay off their loans. In this study, using farmers’ loan data extracted from the Lending Club and U.S. severe weather data, we show that three machine learning algorithms—Artificial Neural Networks (ANNs), Gradient Boosting Trees, and Random Forest—are successful at loan default predictions with accuracies of 70%, 74% and 81%, respectively. Results from the Shapley Additive Explanations (SHAP) also offer evidence of the economic relevance of severe weather and other explanatory variables.

Suggested Citation

  • Gao, Wei & Ju, Ming & Yang, Tongyang, 2023. "Severe weather and peer-to-peer farmers’ loan default predictions: Evidence from machine learning analysis," Finance Research Letters, Elsevier, vol. 58(PA).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006591
    DOI: 10.1016/j.frl.2023.104287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323006591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3226-3264, National Bureau of Economic Research, Inc.
    3. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    4. Möllmann, Johannes & Buchholz, Matthias & Kölle, Wienand & Musshoff, Oliver, 2020. "Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance?," World Development, Elsevier, vol. 127(C).
    5. Berger, Theo, 2023. "Explainable artificial intelligence and economic panel data: A study on volatility spillover along the supply chains," Finance Research Letters, Elsevier, vol. 54(C).
    6. Jagdeep Kaur Brar & Antoine Kornprobst & Willard John Braun & Matthew Davison & Warren Hare, 2021. "A Case Study of the Impact of Climate Change on Agricultural Loan Credit Risk," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    7. Joseph L. Breeden, 2023. "Impacts of Drought on Loan Repayment," JRFM, MDPI, vol. 16(2), pages 1-14, February.
    8. Riza Emekter & Yanbin Tu & Benjamas Jirasakuldech & Min Lu, 2015. "Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 54-70, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Huan & Wu, Weixing, 2024. "Loan default predictability with explainable machine learning," Finance Research Letters, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    2. Paul Geertsema & Helen Lu, 2023. "Relative Valuation with Machine Learning," Journal of Accounting Research, Wiley Blackwell, vol. 61(1), pages 329-376, March.
    3. Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    4. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    5. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    6. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    7. Mingfeng Tang & Mei Mei & Cuiwen Li & Xingyang Lv & Xushuang Li & Lihao Wang, 2020. "How does an individual’s default behavior on an online peer-to-peer lending platform influence an observer’s default intention?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.
    8. Wolfgang Pointner & Burkhard Raunig, 2018. "A primer on peer-to-peer lending: immediate financial intermediation in practice," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue Q3/18, pages 36-51.
    9. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    10. Zhou Rongxi & Xiong Yahui & Wang Ning & Wang Xizu, 2019. "Coupling Degree Evaluation of China’s Internet Financial Ecosystem Based on Entropy Method and Principal Component Analysis," Journal of Systems Science and Information, De Gruyter, vol. 7(5), pages 399-421, October.
    11. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    12. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    13. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    14. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    15. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    16. Yeh, Jen-Yin & Chiu, Hsin-Yu & Huang, Jhih-Huei, 2024. "Predicting failure of P2P lending platforms through machine learning: The case in China," Finance Research Letters, Elsevier, vol. 59(C).
    17. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    18. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    19. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    20. Mohamed, Toka S. & Elgammal, Mohammed M., 2023. "Credit risk in Islamic microfinance institutions: The role of women, groups, and rural borrowers," Emerging Markets Review, Elsevier, vol. 54(C).

    More about this item

    Keywords

    Fintech; Machine learning; Climate change; Farmers; Default risk;
    All these keywords.

    JEL classification:

    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.