IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.23322.html
   My bibliography  Save this paper

The Heterogeneous Effects of Active Labour Market Policies in Switzerland

Author

Listed:
  • Federica Mascolo
  • Nora Bearth
  • Fabian Muny
  • Michael Lechner
  • Jana Mareckova

Abstract

Active labour market policies are widely used by the Swiss government, enrolling more than half of unemployed individuals. This paper analyses whether the Swiss programmes increase future employment and earnings of the unemployed by using causal machine learning methods and leveraging an administrative dataset that captures the population of unemployed and their labour market histories. The findings indicate a small positive average effect on employment and earnings three years after starting a specific Temporary Wage Subsidy programme. In contrast, we find negative effects for Basic Courses, such as job application training, on both outcomes three years after starting the programme. We find no significant effect for Employment Programmes which are conducted outside the regular labour market and Training Courses, such as language and computer courses. The programmes are most effective for individuals with lower education levels and with a migration background from non-EU countries. Last, shallow policy trees provide practical guidance on how the allocation of individuals to programmes could be optimised.

Suggested Citation

  • Federica Mascolo & Nora Bearth & Fabian Muny & Michael Lechner & Jana Mareckova, 2024. "The Heterogeneous Effects of Active Labour Market Policies in Switzerland," Papers 2410.23322, arXiv.org.
  • Handle: RePEc:arx:papers:2410.23322
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.23322
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    2. Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    5. Hugo Bodory & Federica Mascolo & Michael Lechner, 2024. "Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment," Papers 2406.02241, arXiv.org.
    6. Martin, John P. & Grubb, David, 2001. "What works and for whom: a review of OECD countries' experiences with active labour market policies," Working Paper Series 2001:14, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    7. Altmann, Steffen & Falk, Armin & Jäger, Simon & Zimmermann, Florian, 2018. "Learning about job search: A field experiment with job seekers in Germany," Journal of Public Economics, Elsevier, vol. 164(C), pages 33-49.
    8. Lechner, Michael & Smith, Jeffrey, 2007. "What is the value added by caseworkers?," Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
    9. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    10. Julia Hatamyar & Noemi Kreif, 2023. "Policy Learning with Rare Outcomes," Papers 2302.05260, arXiv.org, revised Oct 2023.
    11. Burlat, Héloïse, 2024. "Everybody’s got to learn sometime? A causal machine learning evaluation of training programmes for jobseekers in France," Labour Economics, Elsevier, vol. 89(C).
    12. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    13. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    14. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    15. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    16. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Lechner, Michael, 1999. "Earnings and Employment Effects of Continuous Off-the-Job Training in East Germany after Unification," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 74-90, January.
    19. repec:adr:anecst:y:2008:i:91-92:p:17 is not listed on IDEAS
    20. Annette Bergemann & Gerard J. Van Den Berg, 2008. "Active Labor Market Policy Effects for Women in Europe - A Survey," Annals of Economics and Statistics, GENES, issue 91-92, pages 385-408.
    21. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    22. Rafael Lalive & Jan C. Van Ours & Josef Zweimüller, 2008. "The Impact of Active Labour Market Programmes on The Duration of Unemployment in Switzerland," Economic Journal, Royal Economic Society, vol. 118(525), pages 235-257, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    2. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    3. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    4. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    5. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    6. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    7. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    8. Doerr, Annabelle, 2022. "Vocational Training for Female Job Returners - Effects on Employment, Earnings and Job Quality," Working papers 2022/02, Faculty of Business and Economics - University of Basel.
    9. Doerr, Annabelle, 2022. "Vocational training for female job returners - Effects on employment, earnings and job quality," Labour Economics, Elsevier, vol. 75(C).
    10. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    11. Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
    12. Burlat, Héloïse, 2024. "Everybody’s got to learn sometime? A causal machine learning evaluation of training programmes for jobseekers in France," Labour Economics, Elsevier, vol. 89(C).
    13. Daniele Ballinari & Nora Bearth, 2024. "Improving the Finite Sample Estimation of Average Treatment Effects using Double/Debiased Machine Learning with Propensity Score Calibration," Papers 2409.04874, arXiv.org, revised Jan 2025.
    14. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    15. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    16. Marco Caliendo & Stefan Tübbicke, 2020. "New evidence on long-term effects of start-up subsidies: matching estimates and their robustness," Empirical Economics, Springer, vol. 59(4), pages 1605-1631, October.
    17. Lechner, Michael & Wunsch, Conny & Huber, Martin & Walter, Thomas, 2009. "Do German Welfare-to-Work Programmes Reduce Welfare and Increase Work?," CEPR Discussion Papers 7238, C.E.P.R. Discussion Papers.
    18. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    19. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    20. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.23322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.