IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.08456.html
   My bibliography  Save this paper

A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations

Author

Listed:
  • Lorenc Kapllani
  • Long Teng

Abstract

In this work, we propose a novel backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs), where the deep neural network (DNN) models are trained not only on the inputs and labels but also the differentials of the corresponding labels. This is motivated by the fact that differential deep learning can provide an efficient approximation of the labels and their derivatives with respect to inputs. The BSDEs are reformulated as differential deep learning problems by using Malliavin calculus. The Malliavin derivatives of solution to a BSDE satisfy themselves another BSDE, resulting thus in a system of BSDEs. Such formulation requires the estimation of the solution, its gradient, and the Hessian matrix, represented by the triple of processes $\left(Y, Z, \Gamma\right).$ All the integrals within this system are discretized by using the Euler-Maruyama method. Subsequently, DNNs are employed to approximate the triple of these unknown processes. The DNN parameters are backwardly optimized at each time step by minimizing a differential learning type loss function, which is defined as a weighted sum of the dynamics of the discretized BSDE system, with the first term providing the dynamics of the process $Y$ and the other the process $Z$. An error analysis is carried out to show the convergence of the proposed algorithm. Various numerical experiments up to $50$ dimensions are provided to demonstrate the high efficiency. Both theoretically and numerically, it is demonstrated that our proposed scheme is more efficient compared to other contemporary deep learning-based methodologies, especially in the computation of the process $\Gamma$.

Suggested Citation

  • Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
  • Handle: RePEc:arx:papers:2404.08456
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.08456
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    2. Jian Liang & Zhe Xu & Peter Li, 2021. "Deep learning-based least squares forward-backward stochastic differential equation solver for high-dimensional derivative pricing," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1309-1323, August.
    3. Teng, Long, 2022. "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    4. repec:dau:papers:123456789/5524 is not listed on IDEAS
    5. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    6. Anne Eyraud-Loisel, 2005. "Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps," Post-Print hal-01298905, HAL.
    7. Alessandro Gnoatto & Marco Patacca & Athena Picarelli, 2022. "A deep solver for BSDEs with jumps," Papers 2211.04349, arXiv.org.
    8. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    9. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    10. Huyên Pham & Xavier Warin & Maximilien Germain, 2021. "Neural networks-based backward scheme for fully nonlinear PDEs," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-24, February.
    11. Stefan Ankirchner & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel, 2010. "CREDIT RISK PREMIA AND QUADRATIC BSDEs WITH A SINGLE JUMP," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(07), pages 1103-1129.
    12. Bergman, Yaacov Z, 1995. "Option Pricing with Differential Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 475-500.
    13. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    14. William Lefebvre & Grégoire Loeper & Huyên Pham, 2023. "Differential learning methods for solving fully nonlinear PDEs," Digital Finance, Springer, vol. 5(1), pages 183-229, March.
    15. Céline Labart & Jérôme Lelong, 2011. "A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options," Working Papers hal-00567729, HAL.
    16. Haojie Wang & Han Chen & Agus Sudjianto & Richard Liu & Qi Shen, 2018. "Deep Learning-Based BSDE Solver for Libor Market Model with Application to Bermudan Swaption Pricing and Hedging," Papers 1807.06622, arXiv.org, revised Sep 2018.
    17. Eyraud-Loisel, Anne, 2005. "Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1745-1763, November.
    18. Stefan Ankirchner & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel, 2009. "Credit risk premia and quadratic BSDEs with a single jump," Papers 0907.1221, arXiv.org, revised Jun 2010.
    19. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    20. Yangang Chen & Justin W. L. Wan, 2021. "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 45-67, January.
    21. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    22. Imkeller, Peter & Dos Reis, Gonçalo, 2010. "Path regularity and explicit convergence rate for BSDE with truncated quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 348-379, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenc Kapllani & Long Teng, 2020. "Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations," Papers 2010.01319, arXiv.org, revised Jun 2022.
    2. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.
    3. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    4. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    5. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    6. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    7. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
    8. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    9. Yunfei Peng & Pengyu Wei & Wei Wei, 2024. "Deep Penalty Methods: A Class of Deep Learning Algorithms for Solving High Dimensional Optimal Stopping Problems," Papers 2405.11392, arXiv.org.
    10. Bouchard, Bruno & Elie, Romuald, 2008. "Discrete-time approximation of decoupled Forward-Backward SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 53-75, January.
    11. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    12. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    13. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Aug 2024.
    14. Gnameho Kossi & Stadje Mitja & Pelsser Antoon, 2024. "A gradient method for high-dimensional BSDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 30(2), pages 183-203.
    15. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-31, August.
    16. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    17. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    18. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    19. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    20. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.08456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.