IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i1d10.1007_s42985-020-00062-8.html
   My bibliography  Save this article

Neural networks-based backward scheme for fully nonlinear PDEs

Author

Listed:
  • Huyên Pham

    (LPSM, Université de Paris, CREST-ENSAE & FiME)

  • Xavier Warin

    (EDF R&D & FiME)

  • Maximilien Germain

    (EDF R&D, LPSM, Université de Paris)

Abstract

We propose a numerical method for solving high dimensional fully nonlinear partial differential equations (PDEs). Our algorithm estimates simultaneously by backward time induction the solution and its gradient by multi-layer neural networks, while the Hessian is approximated by automatic differentiation of the gradient at previous step. This methodology extends to the fully nonlinear case the approach recently proposed in Huré et al. (Math Comput 89(324):1547–1579, 2020) for semi-linear PDEs. Numerical tests illustrate the performance and accuracy of our method on several examples in high dimension with non-linearity on the Hessian term including a linear quadratic control problem with control on the diffusion coefficient, Monge-Ampère equation and Hamilton–Jacobi–Bellman equation in portfolio optimization.

Suggested Citation

  • Huyên Pham & Xavier Warin & Maximilien Germain, 2021. "Neural networks-based backward scheme for fully nonlinear PDEs," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-24, February.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00062-8
    DOI: 10.1007/s42985-020-00062-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-020-00062-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-020-00062-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    2. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Long, 2022. "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    2. Jiang Yu Nguwi & Nicolas Privault, 2023. "A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-20, August.
    3. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    4. William Lefebvre & Gr'egoire Loeper & Huy^en Pham, 2022. "Differential learning methods for solving fully nonlinear PDEs," Papers 2205.09815, arXiv.org.
    5. Jiang, Weixin & Wang, Junfang & Varbanov, Petar Sabev & Yuan, Qing & Chen, Yujie & Wang, Bohong & Yu, Bo, 2024. "Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation," Energy, Elsevier, vol. 292(C).
    6. Maximilien Germain & Joseph Mikael & Xavier Warin, 2022. "Numerical Resolution of McKean-Vlasov FBSDEs Using Neural Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2557-2586, December.
    7. William Lefebvre & Grégoire Loeper & Huyên Pham, 2023. "Differential learning methods for solving fully nonlinear PDEs," Digital Finance, Springer, vol. 5(1), pages 183-229, March.
    8. Maximilien Germain & Mathieu Laurière & Huyên Pham & Xavier Warin, 2022. "DeepSets and their derivative networks for solving symmetric PDEs ," Post-Print hal-03154116, HAL.
    9. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuhao Sun & Asaf Cohen & James Stokes & Shravan Veerapaneni, 2023. "Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations," Papers 2311.12239, arXiv.org.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    3. Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    4. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    6. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    7. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    8. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    9. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    10. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    11. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    12. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    13. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    14. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
    15. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    16. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    17. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    18. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    19. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
    20. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00062-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.