IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v4y2023i4d10.1007_s42985-023-00240-4.html
   My bibliography  Save this article

Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus

Author

Listed:
  • Akihiko Takahashi

    (The University of Tokyo)

  • Toshihiro Yamada

    (Hitotsubashi University
    Japan Science and Technology Agency (JST))

Abstract

This paper proposes a new spatial approximation method without the curse of dimensionality for solving high-dimensional partial differential equations (PDEs) by using an asymptotic expansion method with a deep learning-based algorithm. In particular, the mathematical justification on the spatial approximation is provided. Numerical examples for high-dimensional Kolmogorov PDEs show effectiveness of our method.

Suggested Citation

  • Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-31, August.
  • Handle: RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00240-4
    DOI: 10.1007/s42985-023-00240-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-023-00240-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-023-00240-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    2. Akihiko Takahashi & Toshihiro Yamada, 2012. "A Remark on Approximation of the Solutions to Partial Differential Equations in Finance," CARF F-Series CARF-F-273, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2012.
    3. Akihiko Takahashi & Toshihiro Yamada, 2012. "On Approximation of the Solutions to Partial Differential Equations in Finance," CARF F-Series CARF-F-249, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2012.
    4. Akihiko Takahashi & Toshihiro Yamada, 2012. "A Remark on Approximation of the Solutions to Partial Differential Equations in Finance," CIRJE F-Series CIRJE-F-842, CIRJE, Faculty of Economics, University of Tokyo.
    5. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
    6. Akihiko Takahashi & Toshihiro Yamada, 2012. "A Remark on Approximation of the Solutions to Partial Differential Equations in Finance," World Scientific Book Chapters, in: Akihiko Takahashi & Yukio Muromachi & Hidetaka Nakaoka (ed.), Recent Advances In Financial Engineering 2011, chapter 8, pages 133-181, World Scientific Publishing Co. Pte. Ltd..
    7. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    8. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    9. Akihiko Takahashi & Nakahiro Yoshida, 2005. "Monte Carlo Simulation with Asymptotic Method," CIRJE F-Series CIRJE-F-335, CIRJE, Faculty of Economics, University of Tokyo.
    10. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    11. Akihiko Takahashi & Toshihiro Yamada, 2011. "On Approximation of the Solutions to Partial Differential Equations in Finance," CIRJE F-Series CIRJE-F-815, CIRJE, Faculty of Economics, University of Tokyo.
    12. Akihiko Takahashi & Toshihiro Yamada, 2015. "On Error Estimates for Asymptotic Expansions with Malliavin Weights: Application to Stochastic Volatility Model," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 513-541, March.
    13. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-456, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    2. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2022. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver (Journal of Computational Physics, published online 19 January 2022)," CARF F-Series CARF-F-532, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Feb 2022.
    3. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics," CIRJE F-Series CIRJE-F-1178, CIRJE, Faculty of Economics, University of Tokyo.
    4. Akihiko Takahashi & Toshihiro Yamada, 2021. "Asymptotic Expansion and Deep Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Kolmogorov Partial Differential Equations with Nonlinear Coefficients," CIRJE F-Series CIRJE-F-1167, CIRJE, Faculty of Economics, University of Tokyo.
    5. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," CIRJE F-Series CIRJE-F-1212, CIRJE, Faculty of Economics, University of Tokyo.
    6. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus (Forthcoming in "Partial Differential Equations and Applications&quo," CARF F-Series CARF-F-560, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    8. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics(forthcoming in proceedings of IEEE CSDE 2021)," CARF F-Series CARF-F-523, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    10. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," Papers 2101.09890, arXiv.org, revised Jan 2021.
    11. Ning Cai & Chenxu Li & Chao Shi, 2014. "Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 789-822, August.
    12. Akihiko Takahashi & Masashi Toda, 2013. "Note on an Extension of an Asymptotic Expansion Scheme," CARF F-Series CARF-F-312, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Akihiko Takahashi & Masashi Toda, 2012. "Note on an Extension of an Asymptotic Expansion Scheme," CIRJE F-Series CIRJE-F-860, CIRJE, Faculty of Economics, University of Tokyo.
    14. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    15. Akihiko Takahashi & Yukihiro Tsuzuki, 2013. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CIRJE F-Series CIRJE-F-874, CIRJE, Faculty of Economics, University of Tokyo.
    16. Akihiko Takahashi & Masashi Toda, 2012. "Note on an Extension of an Asymptotic Expansion Scheme," CARF F-Series CARF-F-286, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Dec 2012.
    17. Akihiko Takahashi & Yukihiro Tsuzuki, 2013. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CARF F-Series CARF-F-305, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    19. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00240-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.