IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.06622.html
   My bibliography  Save this paper

Deep Learning-Based BSDE Solver for Libor Market Model with Application to Bermudan Swaption Pricing and Hedging

Author

Listed:
  • Haojie Wang
  • Han Chen
  • Agus Sudjianto
  • Richard Liu
  • Qi Shen

Abstract

The Libor market model is a mainstay term structure model of interest rates for derivatives pricing, especially for Bermudan swaptions, and other exotic Libor callable derivatives. For numerical implementation the pricing of derivatives with Libor market models is mainly carried out with Monte Carlo simulation. The PDE grid approach is not particularly feasible due to Curse of Dimensionality. The standard Monte Carlo method for American/Bermudan swaption pricing more or less uses regression to estimate expected value as a linear combination of basis functions (Longstaff and Schwartz). However, Monte Carlo method only provides the lower bound for American option price. Another complexity is the computation of the sensitivities of the option, the so-called Greeks, which are fundamental for a trader's hedging activity. Recently, an alternative numerical method based on deep learning and backward stochastic differential equations appeared in quite a few researches. For European style options the feedforward deep neural networks (DNN) show not only feasibility but also efficiency to obtain both prices and numerical Greeks. In this paper, a new backward DNN solver is proposed for Bermudan swaptions. Our approach is representing financial pricing problems in the form of high dimensional stochastic optimal control problems, FBSDEs, or equivalent PDEs. We demonstrate that using backward DNN the high-dimension Bermudan swaption pricing and hedging can be solved effectively and efficiently. A comparison between Monte Carlo simulation and the new method for pricing vanilla interest rate options manifests the superior performance of the new method. We then use this method to calculate prices and Greeks of Bermudan swaptions as a prelude for other Libor callable derivatives.

Suggested Citation

  • Haojie Wang & Han Chen & Agus Sudjianto & Richard Liu & Qi Shen, 2018. "Deep Learning-Based BSDE Solver for Libor Market Model with Application to Bermudan Swaption Pricing and Hedging," Papers 1807.06622, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1807.06622
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.06622
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Aug 2024.
    2. Yajie Yu & Narayan Ganesan & Bernhard Hientzsch, 2023. "Backward Deep BSDE Methods and Applications to Nonlinear Problems," Risks, MDPI, vol. 11(3), pages 1-16, March.
    3. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    4. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
    5. Jori Hoencamp & Shashi Jain & Drona Kandhai, 2023. "A Semi-Static Replication Method for Bermudan Swaptions under an Affine Multi-Factor Model," Risks, MDPI, vol. 11(10), pages 1-41, September.
    6. Bing Yu & Xiaojing Xing & Agus Sudjianto, 2019. "Deep-learning based numerical BSDE method for barrier options," Papers 1904.05921, arXiv.org.
    7. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    8. Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org.
    9. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    10. Rohini Kumar & Frederick Forrest Miller & Hussein Nasralah & Stephan Sturm, 2024. "Risk-indifference Pricing of American-style Contingent Claims," Papers 2409.00095, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    2. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    3. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    4. Werner Hürlimann, 2012. "Valuation of fixed and variable rate mortgages: binomial tree versus analytical approximations," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 35(2), pages 171-202, November.
    5. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    6. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    7. He, Jie-Cao & Hsieh, Chang-Chieh & Huang, Zi-Wei & Lin, Shih-Kuei, 2023. "Valuation of callable range accrual linked to CMS Spread under generalized swap market model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    8. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    9. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    10. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    11. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    12. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    13. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    14. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    15. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    16. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    17. Xiao, Tim, 2022. "Generic Cancellable Note Analytics," EconStor Preprints 262367, ZBW - Leibniz Information Centre for Economics.
    18. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    19. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    20. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.06622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.