IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.08068.html
   My bibliography  Save this paper

Neural networks-based algorithms for stochastic control and PDEs in finance

Author

Listed:
  • Maximilien Germain
  • Huy^en Pham
  • Xavier Warin

Abstract

This paper presents machine learning techniques and deep reinforcement learningbased algorithms for the efficient resolution of nonlinear partial differential equations and dynamic optimization problems arising in investment decisions and derivative pricing in financial engineering. We survey recent results in the literature, present new developments, notably in the fully nonlinear case, and compare the different schemes illustrated by numerical tests on various financial applications. We conclude by highlighting some future research directions.

Suggested Citation

  • Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:2101.08068
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.08068
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    2. Idris Kharroubi & Thomas Lim & Xavier Warin, 2020. "Discretization and Machine Learning Approximation of BSDEs with a Constraint on the Gains-Process," Working Papers hal-02468354, HAL.
    3. Achref Bachouch & Côme Huré & Nicolas Langrené & Huyen Pham, 2019. "Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications," Working Papers hal-01949221, HAL.
    4. repec:dau:papers:123456789/5524 is not listed on IDEAS
    5. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    6. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-456, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Jiequn Han & Ruimeng Hu, 2021. "Recurrent Neural Networks for Stochastic Control Problems with Delay," Papers 2101.01385, arXiv.org, revised Jun 2021.
    8. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    9. Idris Kharroubi & Thomas Lim & Xavier Warin, 2020. "Discretization and Machine Learning Approximation of BSDEs with a Constraint on the Gains-Process," Papers 2002.02675, arXiv.org.
    10. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    11. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    2. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Luca Di Persio & Emanuele Lavagnoli & Marco Patacca, 2022. "Calibrating FBSDEs Driven Models in Finance via NNs," Risks, MDPI, vol. 10(12), pages 1-19, November.
    4. Mohamed Hamdouche & Pierre Henry-Labordere & Huyen Pham, 2023. "Policy gradient learning methods for stochastic control with exit time and applications to share repurchase pricing," Papers 2302.07320, arXiv.org.
    5. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    6. Maximilien Germain & Mathieu Lauri`ere & Huy^en Pham & Xavier Warin, 2021. "DeepSets and their derivative networks for solving symmetric PDEs," Papers 2103.00838, arXiv.org, revised Jan 2022.
    7. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    8. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    9. Lukas Gonon, 2021. "Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality," Papers 2106.08900, arXiv.org.
    10. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    11. Alexandre Roch, 2023. "Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    12. William Lefebvre & Grégoire Loeper & Huyên Pham, 2023. "Differential learning methods for solving fully nonlinear PDEs," Digital Finance, Springer, vol. 5(1), pages 183-229, March.
    13. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    14. Zhipeng Huang & Balint Negyesi & Cornelis W. Oosterlee, 2024. "Convergence of the deep BSDE method for stochastic control problems formulated through the stochastic maximum principle," Papers 2401.17472, arXiv.org, revised Jul 2024.
    15. William Lefebvre & Gr'egoire Loeper & Huy^en Pham, 2022. "Differential learning methods for solving fully nonlinear PDEs," Papers 2205.09815, arXiv.org.
    16. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    17. Maximilien Germain & Mathieu Laurière & Huyên Pham & Xavier Warin, 2021. "DeepSets and their derivative networks for solving symmetric PDEs ," Working Papers hal-03154116, HAL.
    18. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    19. Ren'e Carmona & Mathieu Lauri`ere, 2021. "Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance," Papers 2107.04568, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    2. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    3. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    4. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    5. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    7. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics," CIRJE F-Series CIRJE-F-1178, CIRJE, Faculty of Economics, University of Tokyo.
    8. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CIRJE F-Series CIRJE-F-1133, CIRJE, Faculty of Economics, University of Tokyo.
    9. Philipp Grohs & Arnulf Jentzen & Diyora Salimova, 2022. "Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-41, August.
    10. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    11. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    12. Akihiko Takahashi & Toshihiro Yamada, 2021. "Asymptotic Expansion and Deep Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Kolmogorov Partial Differential Equations with Nonlinear Coefficients," CIRJE F-Series CIRJE-F-1167, CIRJE, Faculty of Economics, University of Tokyo.
    13. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," Papers 1911.11501, arXiv.org, revised Nov 2020.
    14. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    16. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    18. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    19. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    20. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.08068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.