IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.06471.html
   My bibliography  Save this paper

Regression Discontinuity Design with Spillovers

Author

Listed:
  • Eric Auerbach
  • Yong Cai
  • Ahnaf Rafi

Abstract

Researchers who estimate treatment effects using a regression discontinuity design (RDD) typically assume that there are no spillovers between the treated and control units. This may be unrealistic. We characterize the estimand of RDD in a setting where spillovers occur between units that are close in their values of the running variable. Under the assumption that spillovers are linear-in-means, we show that the estimand depends on the ratio of two terms: (1) the radius over which spillovers occur and (2) the choice of bandwidth used for the local linear regression. Specifically, RDD estimates direct treatment effect when radius is of larger order than the bandwidth, and total treatment effect when radius is of smaller order than the bandwidth. In the more realistic regime where radius is of similar order as the bandwidth, the RDD estimand is a mix of the above effects. To recover direct and spillover effects, we propose incorporating estimated spillover terms into local linear regression -- the local analog of peer effects regression. We also clarify the settings under which the donut-hole RD is able to eliminate the effects of spillovers.

Suggested Citation

  • Eric Auerbach & Yong Cai & Ahnaf Rafi, 2024. "Regression Discontinuity Design with Spillovers," Papers 2404.06471, arXiv.org.
  • Handle: RePEc:arx:papers:2404.06471
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.06471
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    2. Yuchen Hu & Shuangning Li & Stefan Wager, 2022. "Average direct and indirect causal effects under interference [Estimating average causal effects under general interference, with application to a social network experiment]," Biometrika, Biometrika Trust, vol. 109(4), pages 1165-1172.
    3. Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    2. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    3. Cyrus Samii & Ye Wang & Jonathan Sullivan & P. M. Aronow, 2023. "Inference in Spatial Experiments with Interference using the SpatialEffect Package," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 138-156, March.
    4. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    5. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    6. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    7. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    8. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    9. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.
    10. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    11. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org, revised Oct 2024.
    12. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    13. Kyle Butts, 2021. "Difference-in-Differences Estimation with Spatial Spillovers," Papers 2105.03737, arXiv.org, revised Jun 2023.
    14. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    15. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    16. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    17. Rafael Perez Ribas & Fabio Veras Soares & Clarissa Gondim Teixeira & Elydia Silva & Guilherme Issamu Hirata, 2010. "Beyond Cash: Assessing Externality and Behaviour Effects of Non-Experimental Cash Transfers," Working Papers 65, International Policy Centre for Inclusive Growth.
    18. Victoria Stack & Lana L. Narine, 2022. "Sustainability at Auburn University: Assessing Rooftop Solar Energy Potential for Electricity Generation with Remote Sensing and GIS in a Southern US Campus," Sustainability, MDPI, vol. 14(2), pages 1-14, January.
    19. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    20. Ludwig, Jens & Duncan, Greg J. & Katz, Lawrence F. & Kessler, Ronald & Kling, Jeffrey R. & Gennetian, Lisa A. & Sanbonmatsu, Lisa, 2012. "Neighborhood Effects on the Long-Term Well-Being of Low-Income Adults," Scholarly Articles 11870359, Harvard University Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.06471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.