IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.04740.html
   My bibliography  Save this paper

Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes

Author

Listed:
  • Sobin Joseph
  • Shashi Jain

Abstract

An extension of the Hawkes process, the Marked Hawkes process distinguishes itself by featuring variable jump size across each event, in contrast to the constant jump size observed in a Hawkes process without marks. While extensive literature has been dedicated to the non-parametric estimation of both the linear and non-linear Hawkes process, there remains a significant gap in the literature regarding the marked Hawkes process. In response to this, we propose a methodology for estimating the conditional intensity of the marked Hawkes process. We introduce two distinct models: \textit{Shallow Neural Hawkes with marks}- for Hawkes processes with excitatory kernels and \textit{Neural Network for Non-Linear Hawkes with Marks}- for non-linear Hawkes processes. Both these approaches take the past arrival times and their corresponding marks as the input to obtain the arrival intensity. This approach is entirely non-parametric, preserving the interpretability associated with the marked Hawkes process. To validate the efficacy of our method, we subject the method to synthetic datasets with known ground truth. Additionally, we apply our method to model cryptocurrency order book data, demonstrating its applicability to real-world scenarios.

Suggested Citation

  • Sobin Joseph & Shashi Jain, 2024. "Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes," Papers 2402.04740, arXiv.org.
  • Handle: RePEc:arx:papers:2402.04740
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.04740
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    2. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    3. Alexis Fauth & Ciprian A. Tudor, 2012. "Modeling First Line Of An Order Book With Multivariate Marked Point Processes," Papers 1211.4157, arXiv.org.
    4. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    5. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 139-171.
    4. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.
    5. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    6. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Nov 2024.
    7. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    8. Simon Clinet, 2020. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Papers 2001.11624, arXiv.org, revised Aug 2021.
    9. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    10. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
    11. Simon Clinet, 2022. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 189-225, July.
    12. Bilodeau, Yann, 2020. "Deep limit order book events dynamics," Working Papers 20-4, HEC Montreal, Canada Research Chair in Risk Management.
    13. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    14. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    15. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    16. Michael Giegrich & Roel Oomen & Christoph Reisinger, 2024. "Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling," Papers 2409.06514, arXiv.org.
    17. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    18. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    19. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    20. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.04740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.