IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.06514.html
   My bibliography  Save this paper

Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling

Author

Listed:
  • Michael Giegrich
  • Roel Oomen
  • Christoph Reisinger

Abstract

In this paper, we show how $K$-nearest neighbor ($K$-NN) resampling, an off-policy evaluation method proposed in \cite{giegrich2023k}, can be applied to simulate limit order book (LOB) markets and how it can be used to evaluate and calibrate trading strategies. Using historical LOB data, we demonstrate that our simulation method is capable of recreating realistic LOB dynamics and that synthetic trading within the simulation leads to a market impact in line with the corresponding literature. Compared to other statistical LOB simulation methods, our algorithm has theoretical convergence guarantees under general conditions, does not require optimization, is easy to implement and computationally efficient. Furthermore, we show that in a benchmark comparison our method outperforms a deep learning-based algorithm for several key statistics. In the context of a LOB with pro-rata type matching, we demonstrate how our algorithm can calibrate the size of limit orders for a liquidation strategy. Finally, we describe how $K$-NN resampling can be modified for choices of higher dimensional state spaces.

Suggested Citation

  • Michael Giegrich & Roel Oomen & Christoph Reisinger, 2024. "Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling," Papers 2409.06514, arXiv.org.
  • Handle: RePEc:arx:papers:2409.06514
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.06514
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    2. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach To Order Book Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-40.
    3. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2022. "State-dependent Hawkes processes and their application to limit order book modelling," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 563-583, March.
    4. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    5. Hanna Hultin & Henrik Hult & Alexandre Proutiere & Samuel Samama & Ala Tarighati, 2023. "A generative model of a limit order book using recurrent neural networks," Quantitative Finance, Taylor & Francis Journals, vol. 23(6), pages 931-958, June.
    6. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    7. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    8. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    9. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach to Order Book Modelling," Post-Print hal-00621253, HAL.
    10. Frederic Abergel & Aymen Jedidi, 2010. "A Mathematical Approach to Order Book Modeling," Papers 1010.5136, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rama Cont & Pierre Degond & Xuan Lifan, 2023. "A mathematical framework for modelling order book dynamics," Working Papers hal-03968767, HAL.
    2. Rama Cont & Pierre Degond & Lifan Xuan, 2023. "A mathematical framework for modelling order book dynamics," Papers 2302.01169, arXiv.org.
    3. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    4. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    5. Jonathan A. Ch'avez-Casillas & Jos'e E. Figueroa-L'opez, 2014. "One-level limit order book models with memory and variable spread," Papers 1407.5684, arXiv.org, revised Mar 2016.
    6. Weibing Huang & Mathieu Rosenbaum & Pamela Saliba, 2019. "From Glosten-Milgrom to the whole limit order book and applications to financial regulation," Papers 1902.10743, arXiv.org.
    7. Ioane Muni Toke, 2014. "Exact and asymptotic solutions of the call auction problem," Working Papers hal-01061857, HAL.
    8. Ulrich Horst & Dörte Kreher, 2018. "Second order approximations for limit order books," Finance and Stochastics, Springer, vol. 22(4), pages 827-877, October.
    9. Mohammad Zare & Omid Naghshineh Arjmand & Erfan Salavati & Adel Mohammadpour, 2021. "An Agent‐Based model for Limit Order Book: Estimation and simulation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1112-1121, January.
    10. Ioane Muni Toke, 2015. "Exact and asymptotic solutions of the call auction problem," Post-Print hal-01061857, HAL.
    11. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    12. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    13. Ioane Muni Toke, 2014. "Exact and asymptotic solutions of the call auction problem," Papers 1407.4512, arXiv.org, revised Nov 2014.
    14. Ioane Muni Toke, 2017. "Stationary Distribution Of The Volume At The Best Quote In A Poisson Order Book Model," Post-Print hal-01705085, HAL.
    15. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.
    16. Emilio Said, 2019. "How Option Hedging Shapes Market Impact," Papers 1910.05056, arXiv.org, revised Nov 2019.
    17. Simon Clinet, 2020. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Papers 2001.11624, arXiv.org, revised Aug 2021.
    18. Ben Hambly & Jasdeep Kalsi & James Newbury, 2018. "Limit order books, diffusion approximations and reflected SPDEs: from microscopic to macroscopic models," Papers 1808.07107, arXiv.org, revised Jun 2019.
    19. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    20. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.06514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.