IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.17167.html
   My bibliography  Save this paper

The Gatekeeper Effect: The Implications of Pre-Screening, Self-selection, and Bias for Hiring Processes

Author

Listed:
  • Moran Koren

Abstract

We study the problem of screening in decision-making processes under uncertainty, focusing on the impact of adding an additional screening stage, commonly known as a 'gatekeeper.' While our primary analysis is rooted in the context of job market hiring, the principles and findings are broadly applicable to areas such as educational admissions, healthcare patient selection, and financial loan approvals. The gatekeeper's role is to assess applicants' suitability before significant investments are made. Our study reveals that while gatekeepers are designed to streamline the selection process by filtering out less likely candidates, they can sometimes inadvertently affect the candidates' own decision-making process. We explore the conditions under which the introduction of a gatekeeper can enhance or impede the efficiency of these processes. Additionally, we consider how adjusting gatekeeping strategies might impact the accuracy of selection decisions. Our research also extends to scenarios where gatekeeping is influenced by historical biases, particularly in competitive settings like hiring. We discover that candidates confronted with a statistically biased gatekeeping process are more likely to withdraw from applying, thereby perpetuating the previously mentioned historical biases. The study suggests that measures such as affirmative action can be effective in addressing these biases. While centered on hiring, the insights and methodologies from our study have significant implications for a wide range of fields where screening and gatekeeping are integral.

Suggested Citation

  • Moran Koren, 2023. "The Gatekeeper Effect: The Implications of Pre-Screening, Self-selection, and Bias for Hiring Processes," Papers 2312.17167, arXiv.org.
  • Handle: RePEc:arx:papers:2312.17167
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.17167
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sushil Bikhchandani & David Hirshleifer & Omer Tamuz & Ivo Welch, 2024. "Information Cascades and Social Learning," Journal of Economic Literature, American Economic Association, vol. 62(3), pages 1040-1093, September.
    2. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    3. Robert E. Hall, 2005. "The Amplification of Unemployment Fluctuations through Self-Selection," NBER Working Papers 11186, National Bureau of Economic Research, Inc.
    4. Lee, Sam-Ho, 2009. "A theory of self-selection in a market with matching frictions: An application to delay in refereeing times in economics journals," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 344-360, October.
    5. Marina Halac & Ilan Kremer & Eyal Winter, 2020. "Raising Capital from Heterogeneous Investors," American Economic Review, American Economic Association, vol. 110(3), pages 889-921, March.
    6. Emir Kamenica, 2019. "Bayesian Persuasion and Information Design," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 249-272, August.
    7. Danielle Li & Lindsey R. Raymond & Peter Bergman, 2020. "Hiring as Exploration," NBER Working Papers 27736, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Lagziel & Ehud Lehrer, 2021. "Dynamic Screening," Working Papers 2101, Ben-Gurion University of the Negev, Department of Economics.
    2. Orihara, Masanori & Eshraghi, Arman, 2022. "Corporate governance compliance and herding," International Review of Financial Analysis, Elsevier, vol. 80(C).
    3. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9164, University Library of Munich, Germany.
    4. Zikai Xu, 2022. "Observational Learning with Competitive Prices," Papers 2202.06425, arXiv.org, revised May 2022.
    5. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    6. Gu, Chen & Guo, Xu & Zhang, Chengping, 2022. "Analyst target price revisions and institutional herding," International Review of Financial Analysis, Elsevier, vol. 82(C).
    7. Ferdinand Thies & Sören Wallbach & Michael Wessel & Markus Besler & Alexander Benlian, 2022. "Initial coin offerings and the cryptocurrency hype - the moderating role of exogenous and endogenous signals," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1691-1705, September.
    8. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    9. Stéphan Marette, 2017. "Jill E. Hobbs, Stavroula Malla, Eric K. Sogah and May T. Yeung, 2014, Regulating Health Foods. Policy Challenges and Consumer Conundrums," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(1), pages 93-94, July.
    10. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    11. Cao, Melanie & Shi, Shouyong, 2006. "Signaling in the Internet craze of initial public offerings," Journal of Corporate Finance, Elsevier, vol. 12(4), pages 818-833, September.
    12. Martin Andersson & Johan P. Larsson, 2022. "Historical local industry structure, voting patterns and the long-run entrepreneurial character of regions: Swedish examples," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 611-631, December.
    13. Wei He & Qian Wang, 2020. "The peer effect of corporate financial decisions around split share structure reform in China," Review of Financial Economics, John Wiley & Sons, vol. 38(3), pages 474-493, July.
    14. Ben Klemens, 2013. "A Peer-based Model of Fat-tailed Outcomes," Papers 1304.0718, arXiv.org.
    15. Kraemer, Carlo & Noth, Markus & Weber, Martin, 2006. "Information aggregation with costly information and random ordering: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 59(3), pages 423-432, March.
    16. Youn Kue Na & Sungmin Kang, 2018. "Sustainable Diffusion of Fashion Information on Mobile Friends-Based Social Network Service," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    17. Ye Zhang, 2020. "Discrimination in the Venture Capital Industry: Evidence from Field Experiments," Papers 2010.16084, arXiv.org, revised Aug 2022.
    18. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    19. Cavatorta, Elisa & Guarino, Antonio & Huck, Steffen, 2024. "Social learning with partial and aggregate information: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 146(C), pages 292-307.
    20. Frey, Rainer & Hussinger, Katrin, 2006. "The role of technology in M&As: a firm-level comparison of cross-border and domestic deals," Discussion Paper Series 1: Economic Studies 2006,45, Deutsche Bundesbank.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.17167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.