IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.04045.html
   My bibliography  Save this paper

Partial Information Breeds Systemic Risk

Author

Listed:
  • Yu-Jui Huang
  • Li-Hsien Sun

Abstract

This paper considers finitely many investors who perform mean-variance portfolio selection under a relative performance criterion. That is, each investor is concerned about not only her terminal wealth, but how it compares to the average terminal wealth of all investors (i.e., the mean field). At the inter-personal level, each investor selects a trading strategy in response to others' strategies (which affect the mean field). The selected strategy additionally needs to yield an equilibrium intra-personally, so as to resolve time inconsistency among the investor's current and future selves (triggered by the mean-variance objective). A Nash equilibrium we look for is thus a tuple of trading strategies under which every investor achieves her intra-personal equilibrium simultaneously. We derive such a Nash equilibrium explicitly in the idealized case of full information (i.e., the dynamics of the underlying stock is perfectly known), and semi-explicitly in the realistic case of partial information (i.e., the stock evolution is observed, but the expected return of the stock is not precisely known). The formula under partial information involves an additional state process that serves to filter the true state of the expected return. Its effect on trading is captured by two degenerate Cauchy problems, one of which depends on the other, whose solutions are constructed by elliptic regularization and a stability analysis of the state process. Our results indicate that partial information alone can reduce investors' wealth significantly, thereby causing or aggravating systemic risk. Intriguingly, in two different scenarios of the expected return (i.e., it is constant or alternating between two values), our Nash equilibrium formula spells out two distinct manners systemic risk materializes.

Suggested Citation

  • Yu-Jui Huang & Li-Hsien Sun, 2023. "Partial Information Breeds Systemic Risk," Papers 2312.04045, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2312.04045
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.04045
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zachary Feinstein & Andreas Sojmark, 2019. "A Dynamic Default Contagion Model: From Eisenberg-Noe to the Mean Field," Papers 1912.08695, arXiv.org.
    2. Guohui Guan & Xiang Hu, 2022. "Time-Consistent Investment and Reinsurance Strategies for Mean–Variance Insurers in N-Agent and Mean-Field Games," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 537-569, November.
    3. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    4. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    5. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    6. Constantinos Kardaras & Scott Robertson, 2010. "Robust maximization of asymptotic growth," Papers 1005.3454, arXiv.org, revised Aug 2012.
    7. Xiaoshan Chen & Yu-Jui Huang & Qingshuo Song & Chao Zhu, 2013. "The Stochastic Solution to a Cauchy Problem for Degenerate Parabolic Equations," Papers 1309.0046, arXiv.org, revised Mar 2017.
    8. René Carmona & Jean-Pierre Fouque & Seyyed Mostafa Mousavi & Li-Hsien Sun, 2018. "Systemic Risk and Stochastic Games with Delay," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 366-399, November.
    9. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    10. Fei Fang & Yiwei Sun & Konstantinos Spiliopoulos, 2016. "The effect of heterogeneity on flocking behavior and systemic risk," Papers 1607.08287, arXiv.org, revised Jun 2017.
    11. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    12. Li-Hsien Sun, 2018. "Systemic Risk and Interbank Lending," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 400-424, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    2. Li-Hsien Sun, 2019. "Systemic Risk and Heterogeneous Mean Field Type Interbank Network," Papers 1907.03082, arXiv.org, revised Sep 2019.
    3. Zachary Feinstein & Andreas Sojmark, 2019. "A Dynamic Default Contagion Model: From Eisenberg-Noe to the Mean Field," Papers 1912.08695, arXiv.org.
    4. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    5. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    6. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, December.
    7. Chao Deng & Xizhi Su & Chao Zhou, 2024. "Peer effect and dynamic ALM games among insurers," Mathematics and Financial Economics, Springer, volume 18, number 11, December.
    8. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    9. Peng, Xingchun & Wang, Yushuang, 2024. "A non-zero-sum investment and reinsurance game between two mean–variance insurers with dynamic CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    10. Nicole Bäuerle & Tamara Göll, 2023. "Nash equilibria for relative investors via no-arbitrage arguments," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 1-23, February.
    11. Michail Anthropelos & Tianran Geng & Thaleia Zariphopoulou, 2020. "Competition in Fund Management and Forward Relative Performance Criteria," Papers 2011.00838, arXiv.org.
    12. Robert Balkin & Hector D. Ceniceros & Ruimeng Hu, 2023. "Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms," Papers 2307.06450, arXiv.org.
    13. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    14. Dianetti, Jodi & Riedel, Frank & Stanza, Lorenzo, 2024. "Optimal consumption and Investment under Relative Performance Criteria with Epstein-Zin Utility," Center for Mathematical Economics Working Papers 685, Center for Mathematical Economics, Bielefeld University.
    15. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.
    16. Guanxing Fu, 2022. "Mean Field Portfolio Games with Consumption," Papers 2206.05425, arXiv.org, revised Dec 2022.
    17. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.
    18. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    19. Guanxing Fu & Chao Zhou, 2021. "Mean Field Portfolio Games," Papers 2106.06185, arXiv.org, revised Apr 2022.
    20. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.04045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.