IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v70y2024ics1062940823001973.html
   My bibliography  Save this article

A non-zero-sum investment and reinsurance game between two mean–variance insurers with dynamic CVaR constraints

Author

Listed:
  • Peng, Xingchun
  • Wang, Yushuang

Abstract

This paper is devoted to investigating a non-zero-sum game between two competing insurers. The insurers can diversify their insurance risks by purchasing proportional reinsurance and investing their collected premiums into a financial market composed of one risk-free asset and one stock. The reinsurance premiums charged by the reinsurer follow the generalized mean–variance premium principle. Moreover, the dynamic CVaR constraints are incorporated in the game problem to control risks. With the dynamic mean–variance objective, we introduce two forward deterministic auxiliary processes to represent the expectations of the insurers’ wealth processes and transform the original time inconsistent game problem into a standard time consistent game problem with two state variables for each insurer. By adopting the dynamic programming principle and the Lagrange duality method, we derive the Nash equilibrium investment–reinsurance strategies for the two insurers. Finally, the effects of several important model parameters on the optimal policies are analyzed by numerical examples.

Suggested Citation

  • Peng, Xingchun & Wang, Yushuang, 2024. "A non-zero-sum investment and reinsurance game between two mean–variance insurers with dynamic CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
  • Handle: RePEc:eee:ecofin:v:70:y:2024:i:c:s1062940823001973
    DOI: 10.1016/j.najef.2023.102074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823001973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.102074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xin-Li & Zhang, Ke-Cun & Yu, Xing-Jiang, 2009. "Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 473-478, June.
    2. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    3. Li, Bin & Li, Danping & Xiong, Dewen, 2016. "Alpha-robust mean-variance reinsurance-investment strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 101-123.
    4. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    5. Chen, Dengsheng & Lu, Zhengyang & He, Yong, 2023. "Optimal reinsurance-investment game for two insurers with SAHARA utilities under correlated markets," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
    6. Bi, Junna & Cai, Jun, 2019. "Optimal investment–reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 1-14.
    7. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    8. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    9. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    10. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    11. Xiang Lin & Yiping Qian, 2016. "Time-consistent mean-variance reinsurance-investment strategy for insurers under CEV model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(7), pages 646-671, August.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Deng, Chao & Zeng, Xudong & Zhu, Huiming, 2018. "Non-zero-sum stochastic differential reinsurance and investment games with default risk," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1144-1158.
    14. Zhang, Caibin & Liang, Zhibin, 2022. "Optimal time-consistent reinsurance and investment strategies for a jump–diffusion financial market without cash," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    15. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    16. Duni Hu & Hailong Wang, 2018. "Time-consistent investment and reinsurance under relative performance concerns," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(7), pages 1693-1717, April.
    17. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    18. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    19. Chen, Shumin & Yang, Hailiang & Zeng, Yan, 2018. "Stochastic Differential Games Between Two Insurers With Generalized Mean-Variance Premium Principle," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 413-434, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    2. Yang, Yang & Wang, Guojing & Yao, Jing, 2024. "Time-consistent reinsurance-investment games for multiple mean-variance insurers with mispricing and default risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 79-107.
    3. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    4. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.
    5. Yanfei Bai & Zhongbao Zhou & Rui Gao & Helu Xiao, 2020. "Nash Equilibrium Investment-Reinsurance Strategies for an Insurer and a Reinsurer with Intertemporal Restrictions and Common Interests," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    6. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    7. Ning Bin & Huainian Zhu & Chengke Zhang, 2023. "Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    8. Bo, Lijun & Wang, Shihua & Zhou, Chao, 2024. "A mean field game approach to optimal investment and risk control for competitive insurers," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 202-217.
    9. He, Yong & Luouyang, Xueqi & He, Lin & Chen, Haiyan & Li, Sheng, 2024. "Non-zero-sum investment-reinsurance game with delay and ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    10. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    11. Zhang, Caibin & Liang, Zhibin, 2022. "Optimal time-consistent reinsurance and investment strategies for a jump–diffusion financial market without cash," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Chao Deng & Xizhi Su & Chao Zhou, 2024. "Peer effect and dynamic ALM games among insurers," Mathematics and Financial Economics, Springer, volume 18, number 11, December.
    13. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    14. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    15. Helu Xiao & Tiantian Ren & Yanfei Bai & Zhongbao Zhou, 2019. "Time-Consistent Investment-Reinsurance Strategies for the Insurer and the Reinsurer under the Generalized Mean-Variance Criteria," Mathematics, MDPI, vol. 7(9), pages 1-25, September.
    16. Hu, Duni & Chen, Shou & Wang, Hailong, 2018. "Robust reinsurance contracts with uncertainty about jump risk," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1175-1188.
    17. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    18. Qiang Zhang & Qianqian Cui, 2024. "Robust Investment and Proportional Reinsurance Strategy with Delay and Jumps in a Stochastic Stackelberg Differential Game," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-34, December.
    19. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    20. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.

    More about this item

    Keywords

    Investment; Reinsurance; Dynamic CVaR constraints; Non-zero-sum game; Time consistent strategy;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:70:y:2024:i:c:s1062940823001973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.