IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.05425.html
   My bibliography  Save this paper

Mean Field Portfolio Games with Consumption

Author

Listed:
  • Guanxing Fu

Abstract

We study mean field portfolio games with consumption. For general market parameters, we establish a one-to-one correspondence between Nash equilibria of the game and solutions to some FBSDE, which is proved to be equivalent to some BSDE. Our approach, which is general enough to cover power, exponential and log utilities, relies on martingale optimality principle in [3,9] and dynamic programming principle in [6,7]. When the market parameters do not depend on the Brownian paths, we get the unique Nash equilibrium in closed form. As a byproduct, when all market parameters are time-independent, we answer the question proposed in [12]: the strong equilibrium obtained in [12] is unique in the essentially bounded space.

Suggested Citation

  • Guanxing Fu, 2022. "Mean Field Portfolio Games with Consumption," Papers 2206.05425, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2206.05425
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.05425
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    2. Michail Anthropelos & Tianran Geng & Thaleia Zariphopoulou, 2020. "Competition in Fund Management and Forward Relative Performance Criteria," Papers 2011.00838, arXiv.org.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    5. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    6. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    2. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, March.
    3. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," CARF F-Series CARF-F-559, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Bo, Lijun & Wang, Shihua & Zhou, Chao, 2024. "A mean field game approach to optimal investment and risk control for competitive insurers," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 202-217.
    5. Zongxia Liang & Keyu Zhang, 2024. "A Mean Field Game Approach to Relative Investment-Consumption Games with Habit Formation," Papers 2401.15659, arXiv.org.
    6. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," Papers 2304.07108, arXiv.org, revised Oct 2023.
    7. Masaaki Fujii & Masashi Sekine, 2024. "Mean field equilibrium asset pricing model with habit formation," Papers 2406.02155, arXiv.org.
    8. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, March.
    2. Ludovic Tangpi & Xuchen Zhou, 2022. "Optimal Investment in a Large Population of Competitive and Heterogeneous Agents," Papers 2202.11314, arXiv.org, revised Feb 2023.
    3. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.
    4. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    5. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    6. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.
    7. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.
    8. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    9. Guanxing Fu & Chao Zhou, 2021. "Mean Field Portfolio Games," Papers 2106.06185, arXiv.org, revised Apr 2022.
    10. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," Papers 2304.07108, arXiv.org, revised Oct 2023.
    11. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," CARF F-Series CARF-F-559, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. Anastasiya Tanana, 2023. "Relative performance criteria of multiplicative form in complete markets," Papers 2303.07941, arXiv.org.
    13. Chao Deng & Xizhi Su & Chao Zhou, 2020. "Relative wealth concerns with partial information and heterogeneous priors," Papers 2007.11781, arXiv.org.
    14. Jeong Yin Park, 2022. "Optimal portfolio selection of many players under relative performance criteria in the market model with random coefficients," Papers 2209.07411, arXiv.org.
    15. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    16. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    17. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    18. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    19. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    20. David M. Kreps & Walter Schachermayer, 2020. "Convergence of optimal expected utility for a sequence of discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1205-1228, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.05425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.