IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v97y2023i1d10.1007_s00186-022-00804-x.html
   My bibliography  Save this article

Nash equilibria for relative investors via no-arbitrage arguments

Author

Listed:
  • Nicole Bäuerle

    (Karlsruhe Institute of Technology (KIT))

  • Tamara Göll

    (Karlsruhe Institute of Technology (KIT))

Abstract

Within a common arbitrage-free semimartingale financial market we consider the problem of determining all Nash equilibrium investment strategies for n agents who try to maximize the expected utility of their relative wealth. The utility function can be rather general here. Exploiting the linearity of the stochastic integral and making use of the classical pricing theory we are able to express all Nash equilibrium investment strategies in terms of the optimal strategies for the classical one agent expected utility problems. The corresponding mean field problem is solved in the same way. We give four applications of specific financial markets and compare our results with those given in the literature.

Suggested Citation

  • Nicole Bäuerle & Tamara Göll, 2023. "Nash equilibria for relative investors via no-arbitrage arguments," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 1-23, February.
  • Handle: RePEc:spr:mathme:v:97:y:2023:i:1:d:10.1007_s00186-022-00804-x
    DOI: 10.1007/s00186-022-00804-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-022-00804-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-022-00804-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    2. Mark Whitmeyer, 2019. "Relative performance concerns among investment managers," Annals of Finance, Springer, vol. 15(2), pages 205-231, June.
    3. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    4. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    5. Nicole Bäuerle & Stefanie Grether, 2015. "Complete markets do not allow free cash flow streams," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(2), pages 137-146, April.
    6. Chao Deng & Xizhi Su & Chao Zhou, 2020. "Relative wealth concerns with partial information and heterogeneous priors," Papers 2007.11781, arXiv.org.
    7. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    8. Kraft, Holger & Meyer-Wehmann, André & Seifried, Frank Thomas, 2020. "Dynamic asset allocation with relative wealth concerns in incomplete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    9. Alexander Kempf & Stefan Ruenzi, 2008. "Tournaments in Mutual-Fund Families," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 1013-1036, April.
    10. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    11. Jan Kallsen & Johannes Muhle-Karbe, 2010. "Utility Maximization In Affine Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 459-477.
    12. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    13. Xue Dong He & Xun Yu Zhou, 2016. "Hope, Fear, And Aspirations," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 3-50, January.
    14. Stephen J. Brown & William N. Goetzmann & James Park, 2001. "Careers and Survival: Competition and Risk in the Hedge Fund and CTA Industry," Journal of Finance, American Finance Association, vol. 56(5), pages 1869-1886, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis E. Souganidis & Thaleia Zariphopoulou, 2024. "Mean field games with unbounded controlled common noise in portfolio management with relative performance criteria," Mathematics and Financial Economics, Springer, volume 18, number 10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruimeng Hu & Thaleia Zariphopoulou, 2021. "$N$-player and Mean-field Games in It\^{o}-diffusion Markets with Competitive or Homophilous Interaction," Papers 2106.00581, arXiv.org, revised Jun 2021.
    2. Nicole Bauerle & Tamara Goll, 2023. "Nash equilibria for relative investors with (non)linear price impact," Papers 2303.18161, arXiv.org, revised Apr 2024.
    3. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    4. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    5. Kouwenberg, Roy & Ziemba, William T., 2007. "Incentives and risk taking in hedge funds," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3291-3310, November.
    6. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    7. Panagiotis E. Souganidis & Thaleia Zariphopoulou, 2024. "Mean field games with unbounded controlled common noise in portfolio management with relative performance criteria," Mathematics and Financial Economics, Springer, volume 18, number 10, December.
    8. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    9. Lijun Bo & Shihua Wang & Xiang Yu, 2021. "Mean Field Game of Optimal Relative Investment with Jump Risk," Papers 2108.00799, arXiv.org, revised Feb 2023.
    10. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    11. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    12. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    13. Rengifo, Erick W. & Trifan, Emanuela, 2007. "Investors Facing Risk: Loss Aversion and Wealth Allocation Between Risky and Risk-Free Assets," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 28063, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Whitmeyer, Mark, 2023. "Submission costs in risk-taking contests," Games and Economic Behavior, Elsevier, vol. 142(C), pages 101-112.
    15. Michail Anthropelos & Tianran Geng & Thaleia Zariphopoulou, 2020. "Competition in Fund Management and Forward Relative Performance Criteria," Papers 2011.00838, arXiv.org.
    16. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    17. Daniel Lacker & Thaleia Zariphopoulou, 2017. "Mean field and n-agent games for optimal investment under relative performance criteria," Papers 1703.07685, arXiv.org, revised Jun 2018.
    18. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.
    19. Erick Rengifo & Emanuela Trifan, 2008. "How Investors Face Financial Risk Loss Aversion and Wealth Allocation," Fordham Economics Discussion Paper Series dp2008-01, Fordham University, Department of Economics.
    20. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:97:y:2023:i:1:d:10.1007_s00186-022-00804-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.