IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.13743.html
   My bibliography  Save this paper

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design

Author

Listed:
  • Yangyang Yu
  • Haohang Li
  • Zhi Chen
  • Yuechen Jiang
  • Yang Li
  • Denghui Zhang
  • Rong Liu
  • Jordan W. Suchow
  • Khaldoun Khashanah

Abstract

Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM-based autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce \textsc{FinMem}, a novel LLM-based agent framework devised for financial decision-making. It encompasses three core modules: Profiling, to customize the agent's characteristics; Memory, with layered message processing, to aid the agent in assimilating hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, \textsc{FinMem}'s memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare \textsc{FinMem} with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks. We then fine-tuned the agent's perceptual span and character setting to achieve a significantly enhanced trading performance. Collectively, \textsc{FinMem} presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns.

Suggested Citation

  • Yangyang Yu & Haohang Li & Zhi Chen & Yuechen Jiang & Yang Li & Denghui Zhang & Rong Liu & Jordan W. Suchow & Khaldoun Khashanah, 2023. "FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design," Papers 2311.13743, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2311.13743
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.13743
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eero P䴤ri & Mika Vilska, 2014. "Performance of moving average trading strategies over varying stock market conditions: the Finnish evidence," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2851-2872, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    2. Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
    3. Yupeng Cao & Zhi Chen & Qingyun Pei & Fabrizio Dimino & Lorenzo Ausiello & Prashant Kumar & K. P. Subbalakshmi & Papa Momar Ndiaye, 2024. "RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data," Papers 2404.07452, arXiv.org.
    4. Tao Ren & Ruihan Zhou & Jinyang Jiang & Jiafeng Liang & Qinghao Wang & Yijie Peng, 2024. "RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search," Papers 2402.07080, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lohrmann, Christoph & Luukka, Pasi, 2019. "Classification of intraday S&P500 returns with a Random Forest," International Journal of Forecasting, Elsevier, vol. 35(1), pages 390-407.
    2. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    3. Valeriy Zakamulin & Javier Giner, 2020. "Trend following with momentum versus moving averages: a tale of differences," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 985-1007, June.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2017. "Wax and wane of the cross-sectional momentum and contrarian effects: Evidence from the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 397-407.
    5. Massoud Metghalchi & Linda A. Hayes & Farhang Niroomand, 2019. "A technical approach to equity investing in emerging markets," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 389-403, July.
    6. Ma, Yao & Yang, Baochen & Li, Jinyong & Shen, Yue, 2023. "Trend information and cross-sectional returns: The role of analysts," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    7. Farhang Niroomand & Massoud Metghalchi & Massomeh Hajilee, 2020. "Efficient market hypothesis: a ruinous implication for Portugese stock market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(4), pages 749-763, October.
    8. Cristiana Tudor, 2023. "Enhancing Sustainable Finance through Green Hydrogen Equity Investments: A Multifaceted Risk-Return Analysis," Risks, MDPI, vol. 11(12), pages 1-22, December.
    9. Ali Fayyaz Munir & Mohd Edil Abd. Sukor & Shahrin Saaid Shaharuddin, 2022. "Adaptive Market Hypothesis and Time-varying Contrarian Effect: Evidence From Emerging Stock Markets of South Asia," SAGE Open, , vol. 12(1), pages 21582440211, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.13743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.