Deep Reinforcement Learning for Asset Allocation: Reward Clipping
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Amine Mohamed Aboussalah & Ziyun Xu & Chi-Guhn Lee, 2022. "What is the value of the cross-sectional approach to deep reinforcement learning?," Quantitative Finance, Taylor & Francis Journals, vol. 22(6), pages 1091-1111, June.
- Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
- Liyan Yang, 2019. "Loss Aversion in Financial Markets," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 4(1), pages 119-137, November.
- Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
- Miquel Noguer i Alonso & Sonam Srivastava, 2020. "Deep Reinforcement Learning for Asset Allocation in US Equities," Papers 2010.04404, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.
- Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
- MohammadAmin Fazli & Mahdi Lashkari & Hamed Taherkhani & Jafar Habibi, 2022. "A Novel Experts Advice Aggregation Framework Using Deep Reinforcement Learning for Portfolio Management," Papers 2212.14477, arXiv.org.
- Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
- Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
- Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Yoshiharu Sato, 2019. "Model-Free Reinforcement Learning for Financial Portfolios: A Brief Survey," Papers 1904.04973, arXiv.org, revised May 2019.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Yizheng Wang & Enhao Shi & Yang Xu & Jiahua Hu & Changsen Feng, 2024. "Short-Term Electricity Futures Investment Strategies for Power Producers Based on Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 17(21), pages 1-23, October.
- Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
- Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
- Yasuhiro Nakayama & Tomochika Sawaki, 2023. "Causal Inference on Investment Constraints and Non-stationarity in Dynamic Portfolio Optimization through Reinforcement Learning," Papers 2311.04946, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-02-06 (Big Data)
- NEP-CMP-2023-02-06 (Computational Economics)
- NEP-FMK-2023-02-06 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.05300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.