IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.17900.html
   My bibliography  Save this paper

Pretrained LLM Adapted with LoRA as a Decision Transformer for Offline RL in Quantitative Trading

Author

Listed:
  • Suyeol Yun

Abstract

Developing effective quantitative trading strategies using reinforcement learning (RL) is challenging due to the high risks associated with online interaction with live financial markets. Consequently, offline RL, which leverages historical market data without additional exploration, becomes essential. However, existing offline RL methods often struggle to capture the complex temporal dependencies inherent in financial time series and may overfit to historical patterns. To address these challenges, we introduce a Decision Transformer (DT) initialized with pre-trained GPT-2 weights and fine-tuned using Low-Rank Adaptation (LoRA). This architecture leverages the generalization capabilities of pre-trained language models and the efficiency of LoRA to learn effective trading policies from expert trajectories solely from historical data. Our model performs competitively with established offline RL algorithms, including Conservative Q-Learning (CQL), Implicit Q-Learning (IQL), and Behavior Cloning (BC), as well as a baseline Decision Transformer with randomly initialized GPT-2 weights and LoRA. Empirical results demonstrate that our approach effectively learns from expert trajectories and secures superior rewards in certain trading scenarios, highlighting the effectiveness of integrating pre-trained language models and parameter-efficient fine-tuning in offline RL for quantitative trading. Replication code for our experiments is publicly available at https://github.com/syyunn/finrl-dt

Suggested Citation

  • Suyeol Yun, 2024. "Pretrained LLM Adapted with LoRA as a Decision Transformer for Offline RL in Quantitative Trading," Papers 2411.17900, arXiv.org.
  • Handle: RePEc:arx:papers:2411.17900
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.17900
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    2. Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
    3. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
    4. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    5. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    6. Jiwon Kim & Moon-Ju Kang & KangHun Lee & HyungJun Moon & Bo-Kwan Jeon, 2023. "Deep Reinforcement Learning for Asset Allocation: Reward Clipping," Papers 2301.05300, arXiv.org.
    7. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
    8. Federico Cornalba & Constantin Disselkamp & Davide Scassola & Christopher Helf, 2022. "Multi-Objective reward generalization: Improving performance of Deep Reinforcement Learning for applications in single-asset trading," Papers 2203.04579, arXiv.org, revised Feb 2023.
    9. Weiguang Han & Jimin Huang & Qianqian Xie & Boyi Zhang & Yanzhao Lai & Min Peng, 2023. "Mastering Pair Trading with Risk-Aware Recurrent Reinforcement Learning," Papers 2304.00364, arXiv.org.
    10. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    11. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
    12. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    13. Kropiński, Paweł & Bosek, Bartłomiej & Pudo, Mikołaj, 2024. "State ownership, probability of informed trading, and profitability potential: Evidence from the Warsaw Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    14. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.
    15. Maximilian Wehrmann & Nico Zengeler & Uwe Handmann, 2021. "Observation Time Effects in Reinforcement Learning on Contracts for Difference," JRFM, MDPI, vol. 14(2), pages 1-15, January.
    16. Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
    17. Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
    18. MohammadAmin Fazli & Mahdi Lashkari & Hamed Taherkhani & Jafar Habibi, 2022. "A Novel Experts Advice Aggregation Framework Using Deep Reinforcement Learning for Portfolio Management," Papers 2212.14477, arXiv.org.
    19. Jonas Hanetho, 2023. "Commodities Trading through Deep Policy Gradient Methods," Papers 2309.00630, arXiv.org.
    20. Xiao-Yang Liu & Hongyang Yang & Qian Chen & Runjia Zhang & Liuqing Yang & Bowen Xiao & Christina Dan Wang, 2020. "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance," Papers 2011.09607, arXiv.org, revised Mar 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.17900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.