IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.07080.html
   My bibliography  Save this paper

RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search

Author

Listed:
  • Tao Ren
  • Ruihan Zhou
  • Jinyang Jiang
  • Jiafeng Liang
  • Qinghao Wang
  • Yijie Peng

Abstract

The formulaic alphas are mathematical formulas that transform raw stock data into indicated signals. In the industry, a collection of formulaic alphas is combined to enhance modeling accuracy. Existing alpha mining only employs the neural network agent, unable to utilize the structural information of the solution space. Moreover, they didn't consider the correlation between alphas in the collection, which limits the synergistic performance. To address these problems, we propose a novel alpha mining framework, which formulates the alpha mining problems as a reward-dense Markov Decision Process (MDP) and solves the MDP by the risk-seeking Monte Carlo Tree Search (MCTS). The MCTS-based agent fully exploits the structural information of discrete solution space and the risk-seeking policy explicitly optimizes the best-case performance rather than average outcomes. Comprehensive experiments are conducted to demonstrate the efficiency of our framework. Our method outperforms all state-of-the-art benchmarks on two real-world stock sets under various metrics. Backtest experiments show that our alphas achieve the most profitable results under a realistic trading setting.

Suggested Citation

  • Tao Ren & Ruihan Zhou & Jinyang Jiang & Jiafeng Liang & Qinghao Wang & Yijie Peng, 2024. "RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search," Papers 2402.07080, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2402.07080
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.07080
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianping Zhang & Yuanqi Li & Yifei Jin & Jian Li, 2020. "AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment," Papers 2002.08245, arXiv.org, revised Apr 2020.
    2. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
    3. Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org.
    4. Shuo Yu & Hongyan Xue & Xiang Ao & Feiyang Pan & Jia He & Dandan Tu & Qing He, 2023. "Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning," Papers 2306.12964, arXiv.org.
    5. Yangyang Yu & Haohang Li & Zhi Chen & Yuechen Jiang & Yang Li & Denghui Zhang & Rong Liu & Jordan W. Suchow & Khaldoun Khashanah, 2023. "FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design," Papers 2311.13743, arXiv.org, revised Dec 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    2. Yupeng Cao & Zhi Chen & Qingyun Pei & Fabrizio Dimino & Lorenzo Ausiello & Prashant Kumar & K. P. Subbalakshmi & Papa Momar Ndiaye, 2024. "RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data," Papers 2404.07452, arXiv.org.
    3. Saizhuo Wang & Hang Yuan & Leon Zhou & Lionel M. Ni & Heung-Yeung Shum & Jian Guo, 2023. "Alpha-GPT: Human-AI Interactive Alpha Mining for Quantitative Investment," Papers 2308.00016, arXiv.org.
    4. Carolina Camassa, 2023. "Legal NLP Meets MiCAR: Advancing the Analysis of Crypto White Papers," Papers 2310.10333, arXiv.org, revised Oct 2023.
    5. Shengkun Wang & Taoran Ji & Linhan Wang & Yanshen Sun & Shang-Ching Liu & Amit Kumar & Chang-Tien Lu, 2024. "StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction," Papers 2409.08281, arXiv.org.
    6. Feng Xu & Yan Yin & Xinyu Zhang & Tianyuan Liu & Shengyi Jiang & Zongzhang Zhang, 2024. "$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning," Papers 2406.16505, arXiv.org, revised Jun 2024.
    7. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    8. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    9. Masanori Hirano & Kentaro Imajo, 2024. "The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging," Papers 2409.19854, arXiv.org.
    10. Zhongyang Guo & Guanran Jiang & Zhongdan Zhang & Peng Li & Zhefeng Wang & Yinchun Wang, 2023. "Shai: A large language model for asset management," Papers 2312.14203, arXiv.org.
    11. Bruno Gav{s}perov & Marko {DJ}urasevi'c & Domagoj Jakobovic, 2024. "Finding Near-Optimal Portfolios With Quality-Diversity," Papers 2402.16118, arXiv.org.
    12. Hang Yuan & Saizhuo Wang & Jian Guo, 2024. "Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment," Papers 2402.09746, arXiv.org.
    13. Yang Li & Yangyang Yu & Haohang Li & Zhi Chen & Khaldoun Khashanah, 2023. "TradingGPT: Multi-Agent System with Layered Memory and Distinct Characters for Enhanced Financial Trading Performance," Papers 2309.03736, arXiv.org.
    14. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2024. "Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models," Papers 2402.03659, arXiv.org, revised Feb 2024.
    15. Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
    16. Neng Wang & Hongyang Yang & Christina Dan Wang, 2023. "FinGPT: Instruction Tuning Benchmark for Open-Source Large Language Models in Financial Datasets," Papers 2310.04793, arXiv.org, revised Nov 2023.
    17. Hao Shi & Weili Song & Xinting Zhang & Jiahe Shi & Cuicui Luo & Xiang Ao & Hamid Arian & Luis Seco, 2024. "AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors," Papers 2406.18394, arXiv.org, revised Aug 2024.
    18. Chuheng Zhang & Yuanqi Li & Xi Chen & Yifei Jin & Pingzhong Tang & Jian Li, 2020. "DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and Feature Selection for Financial Data Analysis," Papers 2010.01265, arXiv.org, revised Jan 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.07080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.