IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.19857.html
   My bibliography  Save this paper

PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms

Author

Listed:
  • Kamila Zaman
  • Alberto Marchisio
  • Muhammad Kashif
  • Muhammad Shafique

Abstract

Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio. The novelty of Quantum algorithms lies in their acclaimed potential and capability to solve complex problems given the underlying Quantum Computing (QC) infrastructure. Utilizing QC's applicable strengths to the finance industry's problems, such as PO, allows us to solve these problems using quantum-based algorithms such as Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA). While the Quantum potential for finance is highly impactful, the architecture and composition of the quantum circuits have not yet been properly defined as robust financial frameworks/algorithms as state of the art in present literature for research and design development purposes. In this work, we propose a novel scalable framework, denoted PO-QA, to systematically investigate the variation of quantum parameters (such as rotation blocks, repetitions, and entanglement types) to observe their subtle effect on the overall performance. In our paper, the performance is measured and dictated by convergence to similar ground-state energy values for resultant optimal solutions by each algorithm variation set for QAOA and VQE to the exact eigensolver (classical solution). Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning in terms of convergence to the classical solution, which is used as a benchmark. This study paves the way for identifying efficient configurations of quantum circuits for solving PO and unveiling their inherent inter-relationships.

Suggested Citation

  • Kamila Zaman & Alberto Marchisio & Muhammad Kashif & Muhammad Shafique, 2024. "PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms," Papers 2407.19857, arXiv.org.
  • Handle: RePEc:arx:papers:2407.19857
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.19857
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nouhaila Innan & Alberto Marchisio & Mohamed Bennai & Muhammad Shafique, 2024. "QFNN-FFD: Quantum Federated Neural Network for Financial Fraud Detection," Papers 2404.02595, arXiv.org, revised Dec 2024.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    4. Sohum Thakkar & Skander Kazdaghli & Natansh Mathur & Iordanis Kerenidis & Andr'e J. Ferreira-Martins & Samurai Brito, 2023. "Improved Financial Forecasting via Quantum Machine Learning," Papers 2306.12965, arXiv.org, revised Apr 2024.
    5. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    6. Naman S & Gaurang B & Neel S & Aswath Babu H, 2023. "The Potential of Quantum Techniques for Stock Price Prediction," Papers 2308.13642, arXiv.org.
    7. Jaydip Sen & Subhasis Dasgupta, 2023. "Portfolio Optimization: A Comparative Study," Papers 2307.05048, arXiv.org.
    8. Iordanis Kerenidis & Anupam Prakash & D'aniel Szil'agyi, 2019. "Quantum Algorithms for Portfolio Optimization," Papers 1908.08040, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    2. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    3. El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
    4. Sohum Thakkar & Skander Kazdaghli & Natansh Mathur & Iordanis Kerenidis & Andr'e J. Ferreira-Martins & Samurai Brito, 2023. "Improved Financial Forecasting via Quantum Machine Learning," Papers 2306.12965, arXiv.org, revised Apr 2024.
    5. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    6. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    7. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    8. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    9. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2018. "A Big data analytical framework for portfolio optimization," Papers 1811.07188, arXiv.org, revised Nov 2018.
    10. Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
    11. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    12. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    13. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    14. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    15. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    16. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    17. repec:dau:papers:123456789/2256 is not listed on IDEAS
    18. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    19. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    20. Sanchez-Romero, Miguel, 2006. "“Demand for Private Annuities and Social Security: Consequences to Individual Wealth”," Working Papers in Economic Theory 2006/07, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    21. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.19857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.