IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.08793.html
   My bibliography  Save this paper

Quantum Architecture Search for Quantum Monte Carlo Integration via Conditional Parameterized Circuits with Application to Finance

Author

Listed:
  • Mark-Oliver Wolf
  • Tom Ewen
  • Ivica Turkalj

Abstract

Classical Monte Carlo algorithms can theoretically be sped up on a quantum computer by employing amplitude estimation (AE). To realize this, an efficient implementation of state-dependent functions is crucial. We develop a straightforward approach based on pretraining parameterized quantum circuits, and show how they can be transformed into their conditional variant, making them usable as a subroutine in an AE algorithm. To identify a suitable circuit, we propose a genetic optimization approach that combines variable ansatzes and data encoding. We apply our algorithm to the problem of pricing financial derivatives. At the expense of a costly pretraining process, this results in a quantum circuit implementing the derivatives' payoff function more efficiently than previously existing quantum algorithms. In particular, we compare the performance for European vanilla and basket options.

Suggested Citation

  • Mark-Oliver Wolf & Tom Ewen & Ivica Turkalj, 2023. "Quantum Architecture Search for Quantum Monte Carlo Integration via Conditional Parameterized Circuits with Application to Finance," Papers 2304.08793, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2304.08793
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.08793
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouvanik Chakrabarti & Rajiv Krishnakumar & Guglielmo Mazzola & Nikitas Stamatopoulos & Stefan Woerner & William J. Zeng, 2020. "A Threshold for Quantum Advantage in Derivative Pricing," Papers 2012.03819, arXiv.org, revised May 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    2. Koichi Miyamoto & Kenji Kubo, 2021. "Pricing multi-asset derivatives by finite difference method on a quantum computer," Papers 2109.12896, arXiv.org.
    3. Roman Rietsche & Christian Dremel & Samuel Bosch & Léa Steinacker & Miriam Meckel & Jan-Marco Leimeister, 2022. "Quantum computing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2525-2536, December.
    4. Jianjun Chen & Yongming Li & Ariel Neufeld, 2023. "Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis," Papers 2301.09241, arXiv.org, revised Apr 2024.
    5. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    6. Francesca Cibrario & Or Samimi Golan & Giacomo Ranieri & Emanuele Dri & Mattia Ippoliti & Ron Cohen & Christian Mattia & Bartolomeo Montrucchio & Amir Naveh & Davide Corbelletto, 2024. "Quantum Amplitude Loading for Rainbow Options Pricing," Papers 2402.05574, arXiv.org, revised Oct 2024.
    7. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    8. Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
    9. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    10. Vladimir Skavysh & Sofia Priazhkina & Diego Guala & Thomas Bromley, 2022. "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning," Staff Working Papers 22-29, Bank of Canada.
    11. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.08793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.