IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.10808.html
   My bibliography  Save this paper

Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method

Author

Listed:
  • Sebastian Calcetero-Vanegas
  • Andrei L. Badescu
  • X. Sheldon Lin

Abstract

Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework, formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency and severity distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information, and other extensions.

Suggested Citation

  • Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2023. "Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method," Papers 2307.10808, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2307.10808
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.10808
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    2. Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
    3. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    4. M. Hiabu, 2017. "On the relationship between classical chain ladder and granular reserving," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(8), pages 708-729, September.
    5. Tseung, Spark C. & Badescu, Andrei L. & Fung, Tsz Chai & Lin, X. Sheldon, 2021. "LRMoE.jl: a software package for insurance loss modelling using mixture of experts regression model," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 419-440, July.
    6. Christos Argyropoulos & Mark L Unruh, 2015. "Analysis of Time to Event Outcomes in Randomized Controlled Trials by Generalized Additive Models," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-33, April.
    7. Katrien Antonio & Richard Plat, 2014. "Micro-level stochastic loss reserving for general insurance," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(7), pages 649-669.
    8. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    9. Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 496-520, November.
    10. Mack, Thomas, 1994. "Which stochastic model is underlying the chain ladder method?," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 133-138, December.
    11. Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2021. "A New Class of Severity Regression Models with an Application to IBNR Prediction," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 206-231, April.
    12. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    2. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    3. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    4. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    5. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    6. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    7. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    8. Daniel J. Geiger & Akim Adekpedjou, 2022. "Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 815-829, June.
    9. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    10. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.
    11. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    12. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    13. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    14. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    15. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    16. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    17. Andrea Gabrielli & Mario V. Wüthrich, 2018. "An Individual Claims History Simulation Machine," Risks, MDPI, vol. 6(2), pages 1-32, March.
    18. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    19. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    20. Jacky H. L. Poon, 2019. "Penalising Unexplainability in Neural Networks for Predicting Payments per Claim Incurred," Risks, MDPI, vol. 7(3), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.10808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.